검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 64

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing reinforced concrete buildings with seismically deficient column details affect the overall behavior depending on the failure type of column. This study aims to develop and validate a machine learning-based prediction model for the column failure modes (shear, flexure-shear, and flexure failure modes). For this purpose, artificial neural network (ANN), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) models were used, considering previously collected experimental data. Using four machine learning methodologies, we developed a classification learning model that can predict the column failure modes in terms of the input variables using concrete compressive strength, steel yield strength, axial load ratio, height-to-dept aspect ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio. The performance of each machine learning model was compared and verified by calculating accuracy, precision, recall, F1-Score, and ROC. Based on the performance measurements of the classification model, the RF model represents the highest average value of the classification model performance measurements among the considered learning methods, and it can conservatively predict the shear failure mode. Thus, the RF model can rapidly predict the column failure modes with simple column details.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to examine the use of machine translation by Uzbek-speaking Korean learners, focusing on their usage patterns, attitudes, perceptions, and expectations, as well as identifying the educational implications of using machine translation. An online survey, lasting two weeks, involved 85 Korean language learners from universities in Korea and Uzbekistan. The main findings indicated a high reliance on machine translation for Korean language learning, with the majority of respondents using machine translations to find accurate vocabulary and expressions. Regarding their attitudes towards machine translation, learners mainly utilized it for literal communication, reading, and writing, and were generally satisfied with them, especially as tools for learning spellings and pronunciations. The use of machine translation significantly influenced learners’ confidence, interest in learning, and anxiety reduction. In terms of perception, learners found machine translation effective for learning Korean vocabulary, expressions, and writing, but also perceived machine translators as sources of stress and anxiety. Expectations for using machine translation were high for completing tasks in vocabulary, expression, and writing, but low for improving grammar skills and producing error-free Korean expressions.
        5,800원
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In light of the expanding use of technology in education, we attempted to analyze how Korean college students perceived the use of Machine Translation (MT) tools in the classroom. Specifically, this study attempted to explore students’ perceptions of their ability to use MT tools and to measure the reliability of the MT-generated output, along with measuring students’ general sense of confidence in English learning. This research analyzed 183 EFL college students’ responses to an online survey, and a one-way ANOVA was used to test for the differences in the averages of three groups. The results of data analysis revealed that 1) Among beginners, intermediate learners, and advanced learners, those self-identifying as advanced had the highest scores on all the factors measured.; 2) There was a significant mean difference in students’ perceptions of the ability to use MT tools, their beliefs regarding MT’s effectiveness as a learning tool, and affective attitudes towards the use of MT tools between beginner and advanced groups. Based on the findings, pedagogical implications for the effective use of MT tools in the Korean EFL classrooms, and suggestions for future research were presented.
        5,700원
        4.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : To enhance the accuracy of predicting the compressive strength of practical concrete mixtures, this study aimed to develop a machine learning model by utilizing the most commonly employed curing age, specifically, the 28-day curing period. The training dataset consisted of concrete mixture sample data at this curing age, along with samples subjected to a total load not exceeding 2,350 kg. The objective was to train a machine learning model to create a more practical predictive model suitable for real-world applications. METHODS : Three machine learning models—random forest, gradient boosting, and AdaBoost—were selected. Subsequently, the prepared dataset was used to train the selected models. Model 1 was trained using concrete sample data from the 28th curing day, followed by a comprehensive analysis of the results. For Model 2, training was conducted using data from the 28th day of curing, focusing specifically on instances where the total load was 2,350 kg or less. The results were systematically analyzed to determine the most suitable machine learning model for predicting the compressive strength of concrete. RESULTS : The machine learning model trained on concrete sample data from the 28th day of curing with a total weight of 2,350 kg or less exhibited higher accuracy than the model trained on weight-unrestricted data from the 28th day of curing. The models were evaluated in terms of accuracy, with the gradient boosting, AdaBoost, and random forest models demonstrating high accuracy, in that order. CONCLUSIONS : Machine learning models trained using concrete mix data based on practical and real-world scenarios demonstrated a higher accuracy than models trained on impractical concrete mix data. This case illustrates the significance of not only the quantity but also the quality of the data during the machine learning training process. Excluding outliers from the data appears to result in better accuracy for machine learning models. This underscores the importance of using high-quality and practical mixed concrete data for reliable and accurate model training.
        4,000원
        5.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, an optimal model for compressive strength prediction was derived by learning and directly comparing several machine learning models based on the same data. METHODS : Approximately 478 pieces of concrete compressive strength data were obtained to compare the performance of the machine learning models. In addition, five machine learning models were trained based on the obtained data. The performance of the learned model was compared using three performance indicators. Finally, the performance of the model trained using additional data was reviewed. RESULTS : As a result of comparing the performance of machine learning models, the XGB(eXtra Gradient Boost) model showed the best performance. In addition, as a result of the verification based on additional data, highly reliable results can be obtained if the XGB model is used to predict the compressive strength of concrete. CONCLUSIONS : If a concrete strength prediction model is derived based on a machine learning model, a highly reliable model can be derived.
        4,000원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms—specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms—to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.
        4,000원
        9.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure’s safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.
        4,000원
        10.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.
        4,000원
        12.
        2023.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The bandgap characteristics of semiconductor materials are an important factor when utilizing semiconductor materials for various applications. In this study, based on data provided by AFLOW (Automatic-FLOW for Materials Discovery), the bandgap of a semiconductor material was predicted using only the material’s compositional features. The compositional features were generated using the python module of ‘Pymatgen’ and ‘Matminer’. Pearson’s correlation coefficients (PCC) between the compositional features were calculated and those with a correlation coefficient value larger than 0.95 were removed in order to avoid overfitting. The bandgap prediction performance was compared using the metrics of R2 score and root-mean-squared error. By predicting the bandgap with randomforest and xgboost as representatives of the ensemble algorithm, it was found that xgboost gave better results after cross-validation and hyper-parameter tuning. To investigate the effect of compositional feature selection on the bandgap prediction of the machine learning model, the prediction performance was studied according to the number of features based on feature importance methods. It was found that there were no significant changes in prediction performance beyond the appropriate feature. Furthermore, artificial neural networks were employed to compare the prediction performance by adjusting the number of features guided by the PCC values, resulting in the best R2 score of 0.811. By comparing and analyzing the bandgap distribution and prediction performance according to the material group containing specific elements (F, N, Yb, Eu, Zn, B, Si, Ge, Fe Al), various information for material design was obtained.
        4,200원
        13.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to estimate the damage of Whole Crop Corn (WCC; Zea Mays L.) according to abnormal climate using machine learning as the Representative Concentration Pathway (RCP) 4.5 and present the damage through mapping. The collected WCC data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. The machine learning model used DeepCrossing. The damage was calculated using climate data from the automated synoptic observing system (ASOS, 95 sites) by machine learning. The calculation of damage was the difference between the dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCC data (1978-2017). The level of abnormal climate by temperature and precipitation was set as RCP 4.5 standard. The DMYnormal ranged from 13,845-19,347 kg/ha. The damage of WCC which was differed depending on the region and level of abnormal climate where abnormal temperature and precipitation occurred. The damage of abnormal temperature in 2050 and 2100 ranged from -263 to 360 and -1,023 to 92 kg/ha, respectively. The damage of abnormal precipitation in 2050 and 2100 was ranged from -17 to 2 and -12 to 2 kg/ha, respectively. The maximum damage was 360 kg/ha that the abnormal temperature in 2050. As the average monthly temperature increases, the DMY of WCC tends to increase. The damage calculated through the RCP 4.5 standard was presented as a mapping using QGIS. Although this study applied the scenario in which greenhouse gas reduction was carried out, additional research needs to be conducted applying an RCP scenario in which greenhouse gas reduction is not performed.
        4,200원
        14.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고성능 콘크리트(HPC) 압축강도는 추가적인 시멘트질 재료의 사용으로 인해 예측하기 어렵고, 개선된 예측 모델의 개발이 필수적 이다. 따라서, 본 연구의 목적은 배깅과 스태킹을 결합한 앙상블 기법을 사용하여 HPC 압축강도 예측 모델을 개발하는 것이다. 이 논 문의 핵심적 기여는 기존 앙상블 기법인 배깅과 스태킹을 통합하여 새로운 앙상블 기법을 제시하고, 단일 기계학습 모델의 문제점을 해결하여 모델 예측 성능을 높이고자 한다. 단일 기계학습법으로 비선형 회귀분석, 서포트 벡터 머신, 인공신경망, 가우시안 프로세스 회귀를 사용하고, 앙상블 기법으로 배깅, 스태킹을 이용하였다. 결과적으로 본 연구에서 제안된 모델이 단일 기계학습 모델, 배깅 및 스태킹 모델보다 높은 정확도를 보였다. 이는 대표적인 4가지 성능 지표 비교를 통해 확인하였고, 제안된 방법의 유효성을 검증하였다.
        4,000원
        16.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, to improve the optical quality of aspherical plastic lenses for mobile use, the optimal molding conditions that can minimize the phase difference are derived using injection molding simulation, design of experiments, and machine learning. First, factors affecting the phase difference were derived using the design of the experiment method, and a data set was created using the derived factors, followed by the machine learning process. After predicting the model trained using the generated training data as test data and verifying it with the performance evaluation index, the model with the best predictive performance was the random forest model. Therefore, to derive the optimal molding conditions, random forests were used to predict 10,000 random pieces of data. As a result of applying the derived optimal molding conditions to the injection molding simulation, the phase difference of the lens could be reduced by 8.2%.
        4,000원
        17.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to reduce environmental pollution, it is necessary to increase the recycling rate of waste. For this, the separation of recyclables is of utmost importance. The paper conducted a study to automatically discriminate containers by material for beverage containers among recyclables. We developed an algorithm that automatically recognizes containers by four materials: metal, glass, plastic, and paper by measuring the vibration signal generated when the beverage container collides with the bottom plate of the collection box. The amplitude distribution, time series information, and frequency information of the vibration signal were used to extract the characteristics indicating the characteristic difference of the vibration signal for each material, and a classifier was developed through machine learning using these characteristics.
        4,000원
        18.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일반적으로 콘크리트는 골재, 모래, 시멘트, 담수, 혼합재 등 다양한 재료로 구성되어있으며 재령에 따라서 강도가 증 가한다. 콘크리트에 필요한 각 재료의 비율은 혼합 설계를 통해 결정되지만, 콘크리트의 강도는 실험적으로 측정되기 전까지는 알 수 없다. 이러한 한계를 극복하기 위해 실험을 통해 얻은 데이터를 이용하여 콘크리트의 압축 강도를 예측하기 위해 통계수 학과 기계학습 알고리즘을 이용한 많은 연구가 시도되었다. 이전의 연구는 콘크리트 압축 강도 예측에 신경망 기법이 가장 적 합하다고 제안하였다. 그러나 신경망 기법은 다른 기계학습과 비교하여 모델 학습에 계산 비용이 많이 들어 실제로 적용하기 어려운 문제점이 있다. 최근 몇 년 동안 다양한 회귀 분석 모델이 개발되었으므로 본 연구에서는 신경망 대신 최신 회귀 분석 모델을 이용하여 콘크리트 강도 예측모델을 제시하였다. 이를 위해 최근 개발된 회귀 분석 모델에 대한 교차검증을 시행하여 최적의 모델을 선정하였다. 그리드 검색을 통하여 선정된 각 모델의 하이퍼 파라미터를 최적화하고, 국내외 데이터를 활용하여 기계학습 모델을 훈련하고 검증하였다. 이들 중 CatBoost, LGBMR, RFR, XGBoost 회귀모델이 높은 성능을 보여주었다. 특히 그 중에서 XGBoost 회귀 분석 모델이 가장 작은 오차와 높은 정확도를 보여주었다. 이들 중 오류가 가장 큰 LGBMR 모델도 이전 연구에서 제안된 신경망 및 앙상블 모델보다 성능이 우수하였다. 현장 레미콘 콘크리트에 대한 압축 강도 예측을 시행하여 학 습된 모델의 현장 적용 가능성을 확인하였다.
        4,300원
        19.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행 하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법 이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석 방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점 을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계 학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였 다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개 발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변 화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층 6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연 구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예 측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이 터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아 가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단 계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.
        4,200원
        20.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to estimate the damage of Whole Crop Maize (WCM) according to abnormal climate using machine learning and present the damage through mapping. The collected WCM data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. Deep Crossing is used for the machine learning model. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The damage was calculated by difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCM data (1978~2017). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization(WMO) standard. The DMYnormal was ranged from 13,845~19,347 kg/ha. The damage of WCM was differed according to region and level of abnormal climate and ranged from -305 to 310, -54 to 89, and -610 to 813 kg/ha bnormal temperature, precipitation, and wind speed, respectively. The maximum damage was 310 kg/ha when the abnormal temperature was +2 level (+1.42 ℃), 89 kg/ha when the abnormal precipitation was -2 level (-0.12 mm) and 813 kg/ha when the abnormal wind speed was -2 level (-1.60 ㎧). The damage calculated through the WMO method was presented as an mapping using QGIS. When calculating the damage of WCM due to abnormal climate, there was some blank area because there was no data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).
        4,000원
        1 2 3 4