검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 189

        1.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We used Brewster’sLaw to examine the mechanism of liquid crystal(LC) alignment on anorganic insulation layer when subjected to ion-beam irradiation. Brewster’s Law implies that the maximum rate polarized ray on a slanted insulation layers on the substrate and it illustrates the dependence of polarization and the mechanical structure on the ionbeam irradiation process. The pretilt angle of nematic LCs on the organic insulation surface was about 1.13° for an ionbeam exposure of 45° for 1minute at 1800eV. This shows the dependence of LC alignment on the polarization ratio in a slanted organic insulation layer.
        3,000원
        3.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.
        4,000원
        4.
        2023.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials’ resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they’ve been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3YTZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.
        4,000원
        5.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because magnets fabricated using Nd-Fe-B exhibit excellent magnetic properties, this novel material is used in various high-tech industries. However, because of the brittleness and low formability of Nd-Fe-B magnets, the design freedom of shapes for improving the performance is limited based on conventional tooling and postprocessing. Laserpowder bed fusion (L-PBF), the most famous additive manufacturing (AM) technique, has recently emerged as a novel process for producing geometrically complex shapes of Nd-Fe-B parts owing to its high precision and good spatial resolution. However, because of the repeated thermal shock applied to the materials during L-PBF, it is difficult to fabricate a dense Nd-Fe-B magnet. In this study, a high-density (>96%) Nd-Fe-B magnet is successfully fabricated by minimizing the thermal residual stress caused by substrate heating during L-PBF.
        4,000원
        6.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300oC for 1 h and 400oC for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300oC for 1 h), and 167.0 Hv (400oC for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.
        4,000원
        7.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 μm, and the surface fluctuation is measured as approximately 3.2 μm. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.
        4,000원
        8.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 oC and 30 oC with high current, the advanced AGM LAB improves about 25 %. At 0 oC CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.
        4,000원
        9.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we fabricate a thin- and dense-BCuP-5 coating layer, one of the switching device multilayers, through a plasma spray process. In addition, the microstructure and macroscopic properties of the coating layer, such as hardness and bond strength, are investigated. Both the initial powder feedstock and plasma-sprayed BCuP-5 coating layer show the main Cu phase, Cu-Ag-Cu3P ternary phases, and Ag phase. This means that microstructural degradation does not occur during plasma spraying. The Vickers hardness of the coating layer was measured as 117.0 HV, indicating that the fine distribution of the three phases enables the excellent mechanical properties of the plasma-sprayed BCuP-5 coating layer. The pull-off strength of the plasma-sprayed BCuP-5 coating layer is measured as 16.5 kg/cm2. Based on the above findings, the applicability of plasma spray for the fabrication process of low-cost multi-layered electronic contact materials is discussed and suggested.
        4,000원
        10.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, a capacitance pressure sensor with graphene membrane and titanium substrate have been developed and studied as a potential robust substrate and a sensitive membrane material for micromachined devices. Mechanical lamination process combined with micromachining processes have been selected for the fabrication of the pressure sensor. Prior to the fabrication, capacitive pressure sensors based on a graphene diaphragm and titanium substrate have been designed. The fabricated pressure sensor uses a titanium substrate, a graphene film laminated with a floating movable plate, and a fixed surface micromachined back electrode of electroplated nickel. Finite element method is adopted to investigate the residual stresses formed in the process.Also, the out-of-plane strain is calculated under the pressure of the diaphragm. The sensitivity of devices manufactured using these techniques is 7.5 to 4 kPa-1, and the net capacitance change in the range of 0 to 180 kPa is 013 pF.
        4,000원
        11.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene has attracted the interest of many researchers due to various its advantages such as high mobility, high transparency, and strong mechanical strength. However, large-area graphene is grown at high temperatures of about 1,000 °C and must be transferred to various substrates for various applications. As a result, transferred graphene shows many defects such as wrinkles/ripples and cracks that happen during the transfer process. In this study, we address transfer-free, large-scale, and high-quality monolayer graphene. Monolayer graphene was grown at low temperatures on Ti (10nm)-buffered Si (001) and PET substrates via plasma-assisted thermal chemical vapor deposition (PATCVD). The graphene area is small at low mTorr range of operating pressure, while 4 × 4 cm2 scale graphene is grown at high working pressures from 1.5 to 1.8 Torr. Four-inch wafer scale graphene growth is achieved at growth conditions of 1.8 Torr working pressure and 150 °C growth temperature. The monolayer graphene that is grown directly on the Ti-buffer layer reveals a transparency of 97.4 % at a wavelength of 550 nm, a carrier mobility of about 7,000 cm2/V×s, and a sheet resistance of 98 W/□. Transfer-free, large-scale, high-quality monolayer graphene can be applied to flexible and stretchable electronic devices.
        4,000원
        12.
        2020.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Due to its favorable optical properties, Cu2SnS3 (CTS) is a promising material for thin film solar cells. Doping, which modifies the absorber properties, is one way to improve the conversion efficiency of CTS solar cells. In this work, CTS solar cells with selenium doping were fabricated on a flexible substrate using sputtering method and the effect of doping on the properties of CTS solar cells was investigated. In XRD analysis, a shift in the CTS peaks can be observed due to the doped selenium. XRF analysis confirmed the different ratios of Cu/Sn and (S+Se)/(Cu+Sn) depending on the amount of selenium doping. Selenium doping can help to lower the chemical potential of sulfur. This effectively reduces the point defects of CTS thin films. Overall improved electrical properties were observed in the CTS solar cell with a small amount of selenium doping, and a notable conversion efficiency of 1.02 % was achieved in the CTS solar cell doped with 1 at% of selenium.
        4,000원
        13.
        2019.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We study substrate support structures and materials to improve uptime and shorten preventive maintenance cycles for chemical vapor deposition equipment. In order to improve the rolling of the substrate support, the bushing device adopts a ball transfer method in which a large ball and a small ball are mixed. When the main transfer ball of the bushing part of the substrate support contacts the substrate support, the small ball also rotates simultaneously with the rotation of the main ball, minimizing the resistance that can be generated during the vertical movement of the substrate support. As a result of the improvement, the glass substrate breakage rate is reduced by more than 90 ~ 95 %, and the equipment preventive maintenance and board support replacement cycles are extended four times or more, from once a month to more than four months, and the equipment uptime is at least 15 % improved. This study proposes an optimization method for substrate support structure and material improvement of chemical vapor deposition equipment.
        4,000원
        16.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the characteristics of nano crystalline silicon(nc-Si) thin-film solar cells on graphite substrates. Amorphous silicon(a-Si) thin-film solar cells on graphite plates show low conversion efficiency due to high surface roughness, and many recombination by dangling bonds. In previous studies, we deposited barrier films by plasma enhanced chemical vapor deposition(PECVD) on graphite plate to reduce surface roughness and achieved ~7.8 % cell efficiency. In this study, we fabricated nc-Si thin film solar cell on graphite in order to increase the efficiency of solar cells. We achieved 8.45 % efficiency on graphite plate and applied this to nc-Si on graphite sheet for flexible solar cell applications. The characterization of the cell is performed with external quantum efficiency(EQE) and current density-voltage measurements(J-V). As a result, we obtain ~8.42 % cell efficiency in a flexible solar cell fabricated on a graphite sheet, which performance is similar to that of cells fabricated on graphite plates.
        4,000원
        18.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we studied the alignment characteristics of liquid crystal on polyimide substrate when irradiated with ion beam in oblique direction on uniformly coated polyimide substrate. The inclined irradiation angle of the ion beam was set to 30 degree, 45 degree and 60 degree and the characteristics were observed for 1 minute and 2 minutes at an ion beam irradiation intensity of 600 to 3,000 eV for each angle. The Alignment of the liquid crystals were observed using a polarized microscope after preparing antiparallel specimens. The pretilt angle of the liquid crystal using the crystal rotation method was measured, and the applicability to actual products was evaluated. Experimental results showed that uniformly aligned liquid crystals could be obtained in samples irradiated at 1 and 2 minutes with an ion beam intensity of 1200 eV or higher when irradiated with 30 degree and 45 degree tilted ion beams. And, at 60 tilted degree, It shows that uniformly aligned liquid crystals could be obtained in samples irradiated at 1 and 2 minutes with an ion beam intensity of 2400 eV or higher. The pretilt angle of the liquid crystal showed the best characteristics when irradiated with ion beam inclined at 45 degrees, and it was confirmed that the pretilt angle was 0.2 to 1.3 degrees, which is usable for horizontally oriented LCD.
        4,000원
        19.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates the optical characteristics of InGaN multiple quantum wells(MQWs) light emitting diodes(LEDs) on planar sapphire substrates(PSSs), nano-sized PSS(NPSS) and micro-sized PSS(MPSS). We obtain the results as the patterning size of the sapphire substrates approach the nanometer scale: The light from the back side of the device increases and the total light extraction becomes larger than the MPSS- and planar-LEDs. The experiment is conducted by Monte Carlo ray-tracing, which is regarded as one of the most suitable ways to simulate light propagation in LEDs. The results show fine consistency between simulation and measurement of the samples with different sized patterned substrates. Notably, light from the back side becomes larger in the NPSS LEDs. We strongly propose that the increase in the light intensity of NPSS LEDs is due to an abnormal optical distribution, which indicates an increase of extraction probability through NPSS.
        4,000원
        20.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/ SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below 350℃. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and H2O increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., Al2O3) that can sufficiently prevent the diffusion of impurities into the channel.
        4,000원
        1 2 3 4 5