This research aimed to find an eco-friendly way to neutralize water recovered from ready-mixed concrete by dissolving carbon dioxide in it, and to verify the potential use of such water for mixing concrete. Carbon dioxide was injected using nanobubble technology into recovered water, and the optimized conditions for dissolution were established by analyzing the carbon dioxide concentration in the water and measuring pH over time. Mortar was manufactured using this recovered water following carbon dioxide nanobubbles treatment, and measurements of compressive strength and thermogravimetric analysis (TGA) were conducted to verify the formation of calcium carbonate. 2,464 mg/L of carbon dioxide was dissolved in the recovered water, and the pH was measured to be 6.34. The compressive strength of the manufactured mortar was found to be 32.02 % stronger than mortar manufactured with normal tap water. According to the thermogravimetric analysis results, the amount of calcium hydroxide produced in the mortar manufactured with recovered water from ready-mixed concrete was 8.10 %, and the production amount of calcium carbonate was 6.49 %. This means that the amount of calcium carbonate produced was greater than that in mortar manufactured with normal tap water, as well as tap water containing nanobubble carbon dioxide. The carbon dioxide was stably dissolved in water recovered from ready-mixed concrete using nanobubbles, enabling environmentally friendly neutralization without the use of chemicals. Also, when the recovered water from ready-mixed concrete containing dissolved carbon dioxide was used for mixing concrete, it was determined that the carbonation reaction influenced the formation of calcium carbonate, which contributed to the improvement in concrete strength.
Zinc oxide has attracted attention due to its high functionality, including chemical stability, high biocompatibility, and excellent optical properties. In particular, when the particles are nano-sized, they exhibit new characteristics, making them suitable for application in UV-filters, photo-catalysts and cosmetics. This paper provides an overview of nano zinc oxide used for UV filters, and summarizes domestic and international production technology and the industrial status of zinc oxide nano-powder. First, the concept and principle of the nano-sized zinc oxide manufacturing process is provided, and various types of manufacturing methods are analyzed, namely, wet process, dry process, and powder process. Next, the results of an analysis of the domestic sunscreen market size and company status are provided. The production processes of major domestic companies and their product characteristics, such as particle size, purity, surface treatment, and transparency of the zinc oxide powder being produced, are analyzed and provided. The characteristics of zinc oxide produced for use in sunscreens, both domestically and internationally, can be summarized as follows. Manufactured zinc oxide powder is white or transparent, and particle size typically ranges from 30 to 200 nm on average, although non-nano sized powders have also been developed in recent years. When used as a coating, the surface to be coated is typically treated with substances such as silicone oil or silane, and the powder is formulated into products by dispersing it in oil- or water-based systems.
해양 생물 유래 독소는 그 치명적인 유독성으로 인해 비단 인류의 건강 뿐만 아니라 양식, 어업, 해양 생태계 전반에 걸쳐 경제적 손실을 비롯한 부정적인 영향을 미친다. 하지만, 종래에 사용되던 해양 독소 검출법만으로는 이를 다 파악하여 위협을 미연에 방지하기에는 아직 부족한 실정이다. 본 논문에서는 해산물의 해양 독소 잔존 여 부를 판별하기 위해 종래에 사용되었던 시험법들의 한계를 개선하고자 각종 나노 재료 및 신규 기술들이 도입된 신속 검출법들에 대해 조사했으며, 대표적인 연구 결과들을 선정하여 사용한 나노 입자 및 전략에 대해 서술하였 다. 특히 이러한 생물 유래 독소의 검출 기술을 대중화시키고 상용화하기 위해서는, 이를 생성하는 생물군으로부터 독소를 추출하는 전처리 과정을 간소화하는 것이 매우 중요하다. 해당 문제를 해결하고자 다양한 연구에서 표적 독소와 특이적으로 결합하는 항체를 고정화한 자성 나노 입자 기반의 전처리법을 보고했으며, 더 나아가 자성 나노 입자의 촉매 특성까지 활용해 검출 감도를 높이는 다양한 연구들도 발표되었다. 또한, 기존 효소 기반의 비색 법의 검출 한계를 낮추고 검출 시스템의 안정성을 높이기 위해 양자점과 같은 형광 나노 입자를 도입하는 보고들도 있었다. 이 외에도 압타머와 나노 입자 복합체 기반의 전기화학 측정법 및 신규 기술들을 사용하고자 하는 연구들 도 보고되었다. 하지만 해양 환경의 변화에 따라 생성된 신종 독소에 대한 대처는 아직 미흡한 실정이므로, 해양 독소 유도체 또한 아울러 진단 가능한 검출 기술에 대한 후속 연구가 필요하다.
Recently, interest in technology for eco-friendly energy harvesting has been increasing. Polyvinylidene fluoride (PVDF) is one of the most fascinating materials that has been used in energy harvesting technology as well as micro-filters by utilizing an electrostatic effect. To enhance the performance of the electrostatic effect-based nanogenerator, most studies have focused on enlarging the contact surface area of the pair of materials with different triboelectric series. For this reason, one-dimensional nanofibers have been widely used recently. In order to realize practical energy-harvesting applications, PVDF nanofibers are modified by enlarging their contact surface area, modulating the microstructure of the surface, and maximizing the fraction of the β-phase by incorporating additives or forming composites with inorganic nanoparticles. Among them, nanocomposite structures incorporating various nanoparticles have been widely investigated to increase the β-phase through strong hydrogen bonding or ion-dipole interactions with -CF2/CH2- of PVDF as well as to enhance the mechanical strength. In this study, we report the recent advances in the nanocomposite structure of PVDF nanofibers and inorganic nanopowders.
새로운 가능성의 탐험(Exploration)과 기존 확실성의 활용(Exploitation)간 균형은 조직 학습뿐 아니라 전략, 혁신, 연구개발의 중요한 문제다.
기술의 융복합화 트렌드 속에 기업들은 지속적 경쟁 우위를 위해 기술 지식 자산을 가급적 다양하게 보유하려는 동시에 특정 분야에 깊은 기술 역량을 가지려 한다. 기업들은 기술 포트폴리오 전략 고민하지만, 기술 속성에 대한 고려는 제한적이다. 첨단 기술의 대표인 나노기술은 기존의 제품 및 사업 중심 기술과 달리 다양한 분야에 활용되는 일반목적기술 또는 플랫폼 기술 속성을 가지고 있다. 본 연구는 다국적 기업들이 플랫폼 기술로서 나노기술에 대해 탐험과 활용, 즉 다각 화와 특정 기술 우위 관점의 포트폴리오 전략이 혁신 및 재무 성과에 어떤 영향을 미치는지를 패널 데이터 기반으로 다중 회귀 분석을 하였다.
본 연구의 실증 분석결과는 기존의 제품 기술들과 달리, 플랫폼 기술로서의 나노기술은 다각화와 특정 기술 우위가 증가할수록 혁신 성과와 재무 성과에 모두 긍정적인 영향을 주는 것으로 나타났다. 또한 나노기술의 포트폴리오 형태, 즉 다각화와 전문성 기반의 특정 기술 우위 중에, 다각화된 나노기술 포트폴리오가 특정 기술에 우위를 갖는 경우보다 혁신 성과와 재무 성과를 향상시 키는 데 더 많은 기여를 하고 있다는 결과를 얻었다. 이는 기업들이 자원의 제약하에서 일반목적 기술의 경우 포트폴리오 전략에 어떻게 추구하는 것이 효율적인지를 시사한다.
Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.
This study aims to objectively measure the efficiency of nanotechnology R&D programs by systematically evaluating the inputs and outputs of nanotechnology R&D activities and to find implications for improving the efficiency of nanotechnology R&D programs.
Data on input factors such as R&D investment, R&D manpower, R&D period, and output factors such as paper, patent, and commercialization for R&D projects which started from 2008 or afterwards and ended by 2011 are gathered through National Science and Technology Knowledge Information Service, which are used for efficiency evaluation.
In this study, we analyzed R&D efficiency in detailed technology units in depth. The process taken in this study is as follows.
First, the basic statistics of input and output factors to compare and analyze R&D investment, R&D manpower, R&D period, paper, patent, and commercialization status by technology unit are analyzed.
Next, DEA models are utilized to derive the overall efficiency, pure technology efficiency, and scale efficiency by conducting the efficiency evaluation for each technology unit, from which implications for strategic budget allocation are derived. In addition, partial efficiency evaluation is conducted to identify advantages and disadvantages of each technology unit. In turn, cluster analysis is performed to identify similar technology units, from which implications for efficiency improvement are derived.
분리막에 관한 최신의 연구에서는 다양한 분야의 기술을 분리막 분야에 차용하여, 분리막의 성능을 증진시키고 있다. 특히 나노기술과 분리막 제조 기술의 융합연구는 최신 분리막 연구 분야의 하나로 주목받고 있으며, 다양한 나노-하이브리드 분리막이 연구되고 있다. 본 연구에서는 1) 패터닝 기술을 도입한 패턴 분리막의 제조 - 나노 기술의 하나인 패터닝 기술을 분리막 제조 공정에 융합하여, 표면이 패턴화된 분리막을 제조하고 그 성능을 평가하였다. 2) MIL-100(Fe)/CS 등의 나노 입자를 포함하는 분리막의 제조 - 특별한 목적을 가지고 있는 나노입자(MIL-100(Fe)/CS의 경우 항균성 및 친수성)를 분리막 제조에 적용하여 분리막의 막오염 저감 효과를 증진한 분리막을 제조하였다. 에 대한 연구 결과를 발표하고자 한다.
This paper reviews on nano-materials as part of a study to apply nano-technology related technologies to the construction field. First, the synthesis method of nano-materials was examined. Secondly, the mechanical application method of nano-materials was investigated. Finally, the analysis method of nano-materials was investigated.