검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기상청의 기상레이더 관측망을 이용한 하이브리드 고도면 강우추정 기법 기반의 새로운 정량적 합성강수량 추정 방법을 제시한다. HSR기법은 지형클러터, 빔차폐, 비 기상 에코 및 밝은 띠의 영향을 받지 않는 하이브리드 고도면의 반사도를 합성하는 것이 특징이다. HSR 합성반사도는 정적 HSR (STATIC)과 단일편파레이더에 대한 퍼지로직 기법과 이중편파레이더에 대한 시선방향 질감 기반의 품질관리 절차를 사용하는 동적 HSR (DYNAMIC) 합성으로 구분된다. STATIC과 DYNAMIC은 2014년 5월부터 10월까지 10개의 강우 사례에 대해 기상청 현업용 합성강우 (MOSAIC)와 비교검증 하였다. 차폐 영역에서 STATIC, DYNAMIC, MOSAIC의 상관계수는 각각 0.52, 0.78, 0.69이며 평균 상대 오차는 각각 34.08, 30.08, 40.71%로 분석되었다.
        4,800원
        2.
        2018.05 KCI 등재 서비스 종료(열람 제한)
        수문 ․ 기상레이더는 강우량을 바로 추정하지 못하고 여러 단계의 정량적 강우량 추정과정을 거치게 되므로 많은 불확실성 발생요소가 존재한다. 불확실성 관련한 기존 연구들은 정량적 레이더기반 강우량 추정과정에서 보정방법을 이용하여 각 단계별 불확실성을 줄이는 연구들을 수행하였다. 하지만 기존 연구들은 전체 과정에 대한 포괄적인 불확실성을 나타내지 못하고 각 단계별 불확실성의 상대적인 비율도 제시하지 못하는 단점이 있다. 본 연구에서는 정량적 레이더강우량 추정과정의 각 단계별 불확실성을 정량화하고 불확실성 전파를 나타낼 수 있는 적합한 방법을 제시하였다. 첫 번째로 초기와 최종 불확실성, 각 단계별 불확실성의 변동과 상대적인 비율을 나타낼 수 있는 새로운 개념을 제안하였다. 두 번째로 레이더기반 추정과정의 불확실성 정량화와 전파과정을 분석하기 위해 Maximum Entropy Method (MEM)와 Uncertainty Delta Method (UMD)를 적용하였다. 세 번째로 레이더기반 강우량 추정과정의 불확실성 정량화를 위해 2개 품질관리 알고리즘, 2개 강우량 추정방법, 2개 후처리 강우량 보정방법을 2012년 여름철 18개 사례에 대하여 사용하였다. 적용결과, MEM에서 최종 불확실성(후처리 강우량 보정 불확실성: ME = 3.81)이 초기 불확실성(품질관리 불확실성: ME = 4.28)보다 작게 나타났으며, UMD에서도 최종 불확실성(UMD = 4.75)이 초기 불확실성(UMD = 5.33)보다 작게 나타나 불확실성이 감소하는 것으로 나타났다. 하지만 레이더강우량 추정단계의 불확실성은 증가하는 것으로 나타났다. 또한 레이더강우량 추정과정에서 각 단계별로 적합한 방법을 선정하는 것이 각 단계별로 불확실성이 감소시킬 수 있음을 확인하였다. 따라서 본 연구는 새로운 방법이 명확히 불확실성을 정량화할 수 있으며 정확한 정량적 레이더 강우추정에 기여할 것으로 판단한다.
        3.
        2014.10 KCI 등재 서비스 종료(열람 제한)
        기상레이더의 관측 특성상, 지형클러터 등의 관측영역 한계로 인한 관측공백 지역이 발생한다. 이러한 레이더 빔의 차폐는 강우량의 과소추정 원인이 된다. 이를 해결하기 위해 본 연구에서는 Hybrid Scan Reflectivity(HSR) 기법을 개발하고 기존 방법 결과와 비교하였다. 결과에 의하면, 기존 레이더 관측방법으로 지형에 의해 반사도 정보를 얻지 못하는 영역에 대하여 HSR 기법이 레이더 강우량을 추정할 수 있음을 확인하였다. 반사도 스캔기법과 빔차폐/비 빔차폐영역에서 모두 HSR 기법을 적용한 결과가 정확성이 가장 뛰어났다. 다음으로 각 방법별 레이더 추정 강우량을 HEC-HMS에 적용하여 홍수 유출량 추정 정확성을 평가하였다. HSR 기법에 의한 유출량은 RAR 산출 시스템과 M-P 관계식 대비 상관계수는 평균 7%와 10%, Nash-Sutcliffe Efficiency는 평균 18%와 34% 향상되었다. 따라서 정확한 홍수량 추정을 위해 수문분야에 HSR 기법에 의해 추정된 강우량을 활용할 필요성이 있는 것으로 사료된다.
        4.
        2009.08 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 레이더 강우량 자료의 편차보정에 사용되는 G/R비의 정확도를 향상시키기 위하여 fuzzy c-means 방법을 사용한 자료의 군집화를 적용하였다. 대상 레이더자료는 광덕산 레이더기지의 자료로서 유효범위 100km이내의 자료를 대상으로 지상관측망인 기상청의 AWS(Automatic Weather System) 지점에서 관측한 자료와의 비교를 통하여 G/R비를 구하였다. G/R비를 구하는데 있어서 전체 유효범위를 대상으로 동일한 방법을 사용한
        5.
        2002.02 KCI 등재 서비스 종료(열람 제한)
        1998년 여름철, 기상레이더와 레이더 주위의 고밀도 우량계 관측자료를 이용하여 관계식을 산출하기 위하여 관악산 레이더 자료와 강우강도 자료의 확률밀도함수를 구해 확률이 같은 지점을 매치시키는 Window Probability Matching Method(WPMM)라는 통계적 방법을 사용하였다. 레이더 반사도의 확률 분포는 약 15dBZ에서 가장 많은 빈도 분포를 보였고 강우강도의 확률분포는 대부분의 영역에서 시간당 10mm 이하의 비가 내리는 것으로