검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.
        4,000원
        2.
        2020.06 KCI 등재 서비스 종료(열람 제한)
        항만의 주요 정책 및 향후 운영계획 수립 시 정확한 물동량 예측에 관한 연구는 매우 중요하며 이러한 중요성으로 인해 관련 연구가 활발히 수행되고 있다. 본 논문에서는 국내 최대 석탄 및 철광석 처리 항만인 광양항을 대상으로 단계적 회귀분석과 인공신경망모형을 활용하여 모형간 예측력을 비교하였다. 2009년 1월부터 2019년 1월까지 총 121개월의 월별자료를 활용하였으며 석탄 및 철광석 물동량에 영향을 주는 요인을 선정하여 공급관련요인과 시장·경제관련요인으로 분류하였다. 단계적 회귀분석 결과, 광양항 석탄 물동량 예측모형의 경우, 입항선박 톤수, 석탄가격 및 대미환율이 최종변수로 선정되었고 철광석 물동량 예측모형의 경우, 입항선박 톤수, 철광석가격이 최종변수로 선정되었다. 인공신경망모형의 경우, 모델 성능에 영향을 미치는 다양한 Hyper-parameters를 조정하며 최적 모델을 선정하는 시행착오법을 사용하였다. 분석결과 인공신경망모형이 단계적 회귀분석에 비해 우수한 예측성능을 나타내었으며 예측 모형별 예측값과 실측값을 그래프 상 비교 시에도 인공신경망모형이 단계적 회귀분석에 비해 고·저점을 유사하게 나타냈다.
        3.
        2020.02 KCI 등재 서비스 종료(열람 제한)
        세계적인 장기경기침체 속에서 보다 정확한 물동량 예측은 항만정책 수행에 중요하다. 따라서, 본 연구에서는 부산항 컨테이너 물 동량(수출입화물과 환적화물)을 단변량 모형인 ARIMA 뿐만 아니라 인과관계가 있을 것으로 예상되는 경제규모(한국, 중국, 미국의 국내총생산), 금리수준 그리고 경기변동을 고려한 벡터자기회귀모형과 벡터오차수정모형을 활용하여 추정하고 비교하였다. 측정자료는 2014년 1월부터 2019년 8월까지 월별 부산항 컨테이너 물동량이다. 분석결과에 의하면, 수출입물동량 시계열은 비교적 안정적(stationary)이어서 VAR에 의해 추정하였고 환적화물은 불안정적(non-stationary)하지만, 경제규모, 금리 및 경기변동과 공적분(장기적인 균형관계)를 띠고 있어 VEC모형으로 추정하였다. 추정결과, 안정적인 수출입화물 추정에서는 단변량 모형인 ARIMA가 우수하고 추세가 있는 환적화물은 다변량모형인 VEC모형이 보다 예측력이 우수한 것으로 나타나고 있다. 특히 수출입화물은 우리나라 경제규모와 관련이 있고, 환적화물은 중국과 미국 경제규모와 밀접한 관련이 있다. 또한 중국 경제규모가 미국에 비하여 더 밀접하게 나타나고 있어 환적화물 증대전략에 시사점을 주고 있다.
        4.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        최근 FTA 체결로 인해 우리나라는 보다 효율적이고 효과적인 수출입 화물의 물동량 관리가 필요한 시점이다. 그 중 양곡화물은 우리나라 국민들의 식생활에 필요한 주요 화물이며 FTA 협정시 주요 수출입 화물로 지정된 바 있다. 일반적으로 양곡화물은 대부분 인천항을 통해 수출입되고 있어 본 연구에서는 인천항에 취급되는 양곡화물 물동량의 향후 수요에 대한 예측 연구를 진행하였다. 연구방법론은 시스템다이내믹스를 사용하였고 양곡화물 물동량에 영향을 주는 요인으로는 인구, 1인당 연간 양곡소비량, GDP, GRDP, 환율, BDI를 이용하였다. 본 연구모델의 시뮬레이션 기간은 2000년부터 2020년이며 2007년까지의 실제 데이터를 사용하였다. 시뮬레이션 결과 2020년에 인천항에서 취급되는 양곡화물의 물동량은 약 2백만 톤으로 예측 되었으며 결과적으로 인천항에서 취급되는 양곡화물 물동량이 지속적으로 감소하는 추세를 보이고 있다. 그리고 예측된 결과값의 정확도를 측정하기 위해 MAPE 검증을 실시하였으며 6.3%의 결과값을 얻어 매우 정확한 예측으로 판정되었다. 또한 양곡화물 물동량에 영향을 주는 각 요인들의 변동에 따라 양곡물동량에 미치는 요인을 살펴보았으며 인구가 양곡물동량에 가장 큰 영향을 미치고 환율은 거의 영향이 없는 것으로 나타났다.
        5.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.
        6.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 광양항의 장래 컨테이너 물동량 및 교통량을 일변량 시계열모형을 통해 예측하고, 컨테이너 선박교통량을 산출하였다. 광양항의 물돌량과 입항 척당 물동량의 시계열 모형은 모두 추세와 계절적 변동이 있는 Winters 가법 모형으로 최적합 되었다. 광양항의 컨테이너 물동량은 2007년과 비교하여 2011년과 2015년에 각각 7.4%, 16.2% 가량 증가하여 약 2,756천TEU, 4,470천TEU가 될 것으로 예측되었다. 또한 2011년과 2015년의 컨테이너 입항 척당 평균 물동량은 2007년 대비 약 30.3%, 54.6% 증가하여 각각 675TEU, 801TEU가 될 것으로 예측되었다. 광양항에 대한 컨테이너 선박의 교통량은 2011년과 2015년에 각각 4,078척, 5,921척이 될 것으로 추정되었다.
        7.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        컨테이너항만의 물동량 예측은 항만의 개발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA모형 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모형과 비선형모형에 강점이 있는 ARIMA모형과 신경망모형을 결합해 보다 효과적인 예측 모형을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.
        8.
        2002.06 KCI 등재 서비스 종료(열람 제한)
        컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.