검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        The fast pyrolysis of biomass (larch) in a circulating fluidized bed pyrolyzer was performed and the physico-chemical characteristics of biocrude-oil was investigated. Standard sand was used for fluidizing material and various reaction temperatures from 400℃ to 550℃ was applied. Wood (larch) sample was examined thorough proximate analysis and thermogravimetric analysis (TGA). From the results of the sample test, thermal decomposition characteristics of wood (larch) was investigated. Various analyses were carried out to determine the physicochemical properties of biocrude-oil such as Higher heating value (HHV), water content, viscosity, ash content and microscopic anaysis. The maximum biocrude-oil yield was 49.9wt.% at 550℃. At this temperature, HHV and water content were 4562.0 kcal/kg and 13.8wt.%, respectively. From the study results, wood (larch) has potential as an alternative energy source.
        2.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Converting biomass to biocrude oil has been extensively studied worldwide as a renewable energy technology and a solution to global warming caused by overuse of fossil fuels because it is a carbon neutral fuel that originates from biomass and, thus, could help prevent climate change. Fast pyrolysis is an effective technology for producing biocrude-oil, and woody biomass is usually used as feedstock. Although many studies have been performed with this feedstock, high production cost and low higher heating value (HHV) have frequently reported as challenging barriers to commercialization. Thus, coffee ground residue was selected as an alternative feedstock to overcome this barrier due to its higher HHV than other biomasses, as well as an expected improvement in the recycling rate of organic waste from many coffee shops. A kinetic study on the thermal decomposition reaction of ground coffee residue was carried out previously to investigate pyrolysis characteristics by thermogravimetric analysis, and its kinetic parameters were studied using two calculation models. A bubbling-fluidized-bed reactor was used for fast pyrolysis and the yield and characteristics of the biocrudeoil from ground coffee residue were investigated at reaction temperatures of 400-600°C. The activation energy of the decomposition reaction was calculated separately to be 41.57 kJ/mol and 44.01-350.20 kJ/mol with the above two methods. The highest biocrude-oil content was about 51.7wt% at 550°C.