검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 생태계 모델을 이용하여 부산연안으로 유입되는 부하량 삭감에 따른 해역의 수질개선 정도를 예측하였다. 모델링 결과에 의하면 COD, T-N, T-P 모두 수영만 연안과 낙동강 하구에서 뚜렷한 개선을 나타냈으며, 수영만을 제외한 만 중부에서 만 동쪽까지 는 수질개선이 거의 나타나지 않았다. 이는, 부산연안이 남해에 위치한 다른 해역에 비해 개방형경계를 가지고 있어서, 물질교환이 빠르 기 때문으로 판단된다. 수질개선을 위한 본 해역의 삭감 COD 부하량은 타 해역에 비해 적었고, 총 유입부하량에 대한 삭감비율 또한 작게 나타났다. 본 연구에 적용한 부하삭감량을 적용하면 수영만, 낙동강 하구부근에서 뚜렷한 수질개선효과를 얻을 수 있을 것으로 판단된다.
        4,000원
        4.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고준위 방사성폐기물 처분장으로부터 유출된 핵종에 의한 선량률을 계산하기 위한 생태계평가 코드 ACBIO를 일반적인 구획모델링도구인 AMBER를 이용하여 BIOMASS 방법론을 적용하여 개발하였다. ACBIO의 유용성을 보이고, 구획의 변화나 일부 파라미터값의 변화에 따른 구획 내 농도와 방사능, 그리고 구획간의 플럭스의 민감도도 검토하였다. 지하매질-생태계 경계(GBI)를 통해 넘어오는 핵종의 유출플럭스에 따른 선량환산인자를 각 핵종별로 구하여 결정집단내 개인의 최대피폭선량율을 선량환산인자로 얻는 계산을 수행하였다. 또한 생태계 요소의 구획모델링이나 가능한 피폭집단의 설정, 그리고 GBI의 인지 등이 생태계평가에 중요한 요소가 되는 것을 확인하였다.
        6,700원
        5.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2003년 하계 진해만의 수질개선을 위한 육상오염물질 삭감량을 산정하기 위해 생태계 모델을 적용하였다. 모델에 의해 재현된 진해만의 수질은 마산만 측의 내측에서 해양수질 등급 III을 상회하는 수준으로 나타났으며, 등급 II의 수질로 개선하기 위해서는 육상부하를 50% 삭감하는 것이 효율적인 것으로 나타났다. 진해만 전 해역을 목표수질인 화학적 산소요구량 (COD) 농도 2.0mg/L을 만족하는 조 건은 전체 육상부하의 70~90%를 삭감하거나, 전체 육상부하와 저질 용출부하의 50%를 동시에 삭감하여야 하는 것으로 나타났다. 해역 II등급을 유지하기 위해 삭감해야 할 양은 유기물과 영양염을 동시에 삭감할 경우, 유기물 (COD) 5,632kg/day, 용존무기인 481kg/day 및 용존무기질소 7,991kg/day이며, 이 때 오염부하량의 한계 즉, 환경용량은 화학적산소요구량 부하 13,112kg/day, 용존무기인 206kg/day 그리고 용존무기질소 3,425kg/day 이라고 할 수 있다.
        4,000원
        6.
        2008.09 KCI 등재 서비스 종료(열람 제한)
        This research was performed to simulate shellfish production systems and sales in Gamak Bay, South Korea. To study the way the shellfish system generates maxima, a numerical model was developed to simulate the model under a control and a number of different scenarios. The program calculates the EMERGY flows by multiplying the flows of energy and materials by the appropriate solar transformity. In this study, an energy systems model was built to simulate the variation of sustainability for oyster aquaculture. The results of the simulation based on 2005 data that as oyster production yield slightly increases, money and assets increase to a steady state. When the program is run control simulation, the system reaches carrying capacity after 8 years. The simulation of models with price of purchased inputs increased with 3.5% inflation rate per year showed maximum benefit of shellfish production occurs after 6 years but amounts are less than control simulation, and then decreases slightly in money and yield results. The results with 3.5% inflation and increase of oyster price annually showed steady and slightly increase of money and yield.
        7.
        2007.08 KCI 등재 서비스 종료(열람 제한)
        The three-dimensional eco-hydrodynamic model was applied to estimate the autochthonous COD caused by production of phytoplankton in Jinhae Bay. A residual current was simulated, using a hydrodynamic model, to have a sightly complicated pattern in the inner part of the bay, ranging from 0.001 to 5 cm/s. In the outer part of the bay, the simulated current flowed out to the south sea with a southward flow at a maximum of 25 cm/s. The results of the ecological model simulation of COD levels showed high concentrations, exceeding 4 mg/L, in the inner bay of Masan, an area of wastewater discharge, and lower levels, approaching less than 1 mg/L, closer to the outer part of the bay. The simulation results of Autochthonous COD by two methods using ecological modeling, showed high ratio over 70% of total COD. Therefore, it is more important to consider nutrients than organic matters in the region for control COD standard.
        8.
        2005.09 KCI 등재 서비스 종료(열람 제한)
        The three-dimensional eco-hydrodynamic model was applied to estimate the physical process in terms of COD (chemical oxygen demand) and net supply(or decomposition) rate of COD in Kamak Bay to find proper management plan for oxygen demanding organic matters. The estimation results of the physical process in terms of COD showed that transportation of COD is dominant in surface level while accumulation of COD is dominant in bottom level. In the case of surface level, the net supply rate of COD was 0~0.50 mg/m2/day. The net decomposition rate of COD was 0~0.04 mg/m2/day in middle level(3~6m) and 0.05~0.15 mg/m2/day in bottom level(6m~bottom). These results indicates that the biological decomposition and physical accumulation of COD are occurred predominantly at the northern part of bottom level. Therefore, it is important to consider both allochthonous and autochthonous oxygen demanding organic matters in the region.
        9.
        2005.09 KCI 등재 서비스 종료(열람 제한)
        A three-dimensional ecological model (EMT-3D) was applied to Nonylphenol in Tokyo Bay. EMT-3D was calibrated with data obtained in the study area. The simulated results of dissolved Nonylphenol were in good agreement with the observed values, with a correlation coefficient(R) of 0.7707 and a coefficient of determination (R2) of 0.5940. The results of sensitivity analysis showed that biodegradation rate and bioconcentration factor are most important factors for dissolved Nonylphenol and Nonylphenol in phytoplankton, respectively. In the case of Nonylphenol in particulate organic carbon, biodegradation rate and partition coefficient were important factors. Therefore, the parameters must be carefully considered in the modeling. The mass balance results showed that standing stocks of Nonylphenol in water, in particulate organic carbon and in phytoplankton are 8.60×105 g, 2.19×102 g and 3.78×100 g, respectively. With respect to the flux of dissolved Nonylphenol, biodegradation in the water column, effluent to the open sea and partition to particulate organic carbon were 6.02×103 g/day, 6.02×102 g/day and 1.02×101 g/ day, respectively.
        10.
        1999.10 KCI 등재 서비스 종료(열람 제한)
        From the environmental aspects, primary productivity of phytoplankton plays the most important role in enhancement of marine culture oyster production. This study may be divided into two branches; one is estimation of maximum oyster meat production per unit facility(Carrying Capacity) under the present environmental conditions in Kamak Bay, the other is improvement of carrying capacity from increase of primary productivity by changing the environmental conditions that cause not to form an unfavorable environment such as the formation of oxygen deficient water mass using the eco-hydrodynamic model. By simulation of three-dimensional hydrodynamic model and ecosystem model, the comparison between observed and computed data showed good agreement. The results of sensitivity analysis showed that phytoplankton maximum growth rate was the most important parameter for phytoplankton and dissolved oxygen. The estimation of mean primary productivity of Wonpo, Kamak, Pyongsa, and Kunnae culture grounds in Kamak Bay during culturing period were 3.73gC/㎡/d, 2.12gC/㎡/d, 1.98gC/㎡/d, and 1.26gC/㎡/d, respectively. Under condition not to form the oxygen deficient water mass, four times increasing of pollutants loading as much as the present loading from river increased mean primary productivity of whole culture grounds to 4.02gC/㎡/d. Sediment N, P fluxes that allowed for 35% increasing from the present conditions increased mean primary productivity of whole culture grounds to 3.65gC/㎡/d. Finally, ten times increasing of boundary loadings from the present conditions increased mean primary productivity of whole culture grounds to 3.95gC/㎡/d. The maximum oyster meat production per year and that of unit facility in actual oyster culture grounds under the present conditions were 6,929ton and 0.93ton, respectively. This 0.93ton/unit facility is considered to be the carrying capacity in study area, and if the primary productivity is increased by changing the environmental conditions, oyster production can be increased.
        11.
        1998.12 KCI 등재 서비스 종료(열람 제한)
        A three-dimensional ecosystem model is applied to the Suyoung Bay, located at the southeastern part of Korea, to study of the material distribution in the time scale of several tens days. The model has included of the DIN(Dissolved Inorganic Nitrogen), DIP(Dissolved Inorganic Phosphate), phytoplankton, zooplankton and detritus, and also was coupled with the physical processes. The spatial distribution of chlorophyll-a and primary productivity in the model is determined by the physical and chemical-biological parameters. The horizontal distributions of the DIN, DIP and chlorophyll-a are decreased from the coast to the off-shore, though the nutrients show some more complicated pattern than the chlorophyll-a. The nutrient contents in the off shore are low, and thus a relatively low productivity(chlorophyll-a) are presented. On the whole, the distribution of the results of model are smoother than the observed ones and some small scale variation in the observed data cannot be reproduced by the model due to the resolution limits of model. However, the basic pattern and the quantitavities has been reproduced by the model well.