검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 수확 전 키토산(100mg·L-1 동량의 염화칼슘 포함) 처리가 황육계 키위프루트 ‘한라골드’ 의 저장 중 품질과 연화에 미치는 영향을 살펴보고자 수행하였다. 키토산 처리 과실은 저장 60일까지 무처리 과실보다 경도가 높게 유지되었고, 전분도 높았지만 에탄올 불용성물질의 차이는 없었다. 수확기의 가용성고형물 함량은 칼슘-키토산 처리에서 낮았으나, 저장 중 전분의 감소와 더불어 지속적으로 증가하여 저장 1개월 후에는 처리간 차이를 보이지 않았고, 유리당(포도당, 과당, 자당) 함량도 유사한 경향이었다. 따라서 수확 전 칼슘-키토산 처리는 과실의 성숙을 지연시켰으나, 후숙 과정에서는 당 축적을 저해하지 않았다. 수확 시의 칼슘-키토산 처리 과실의 수용성 펙틴은 무처리보다 낮았지만 고분자 분획이 더 많았고 반면에 킬레이트 및 알칼리 용해성 펙틴은 대조구보다 높았다. 저장기 간 중 α-L-arabinofuransidase와 pectate lyase의 활성이 칼슘-키토산 처리 과실에서 지속적으로 낮게 유지되었으며 α-mannosidase, polygalacturonase, xylanase, β-galactosidase는 칼슘-키토산 처리의 영향을 크게 받지 않았다. 또한 칼슘-키토산 처리는 세포벽 결합 칼슘을 증가시켜주었다. 결론적으로 수확 전 칼슘-키토산 처리는 과실의 성숙 과정을 지연시키지만 경도를 높여주었고, 후숙(ripening) 이후에는 당도를 비롯한 내적 품질에 영향을 주지 않았다.
        4,500원
        2.
        2006.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to determine the influence of postharvest dipping treatment with aminoethoxyvinylglycine (AVG) on ethylene production and composition of non-cellulosic neutral sugars in cell walls of 'Tsugaru' apple fruits during storage. Fruits were harvested on August 20, soaked in AVG 50 and 75 mg L-1 solution for 5 minutes, and stored in cold storage chamber at 0±1℃ for 60 days. Fruit quality factor, ethylene productions, and cell wall component changes were investigated at 20 days interval. As a result, the fruit firmness and acid content were much higher in AVG treated fruits than those of untreated one during 60 days of cold storage. Ethylene production of AVG treated fruits was reduced to the level of 1/10 compared with untreated one. As to the change of non-cellulosic neutral sugars in the cell walls of 'Tsu- garu' fruits, the major sugar was arabinose and galactose in water, CDTA and Na2CO3 soluble fractions. The content of arabinose and galactose in untreated fruits increased as the softening of fruits was in progress, but the fruits treated with AVG showed a little change during storage, so it is predicted that these two cell wall compositional sugars were not solubilized by the treatment of AVG. Accordingly, the marketability of 'Tsu- garu' fruits could remarkably increase when soaking the fruits in AVG solution after harvest.
        4,000원
        4.
        1996.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식물 탄수화물중에서 식물 세포벽에 광범위하게 분포되어 있는 펙틴물질은 특히 식품산업에서 중요한 역할을 담당하여 과일이나 야채의 연화물질로 작용하며 특히 겔을 형성하는 물질로 알려져 있다. 본 논문은 이러한 펙틱물질을 가수분해하는 펙틴계 효소들에 대하여 그 물리화학적 성질 및 산업적 응용에 관하여 고찰하고자 펙틴효소의 분류 및 각 효소들의 활성측정 방법, 효소의 작용 및 산업적 응용에 대하여 기존에 보고된 결과들을 정리하였다.
        4,000원
        5.
        2018.05 서비스 종료(열람 제한)
        Background : The soil-borne ascomycete fungus Ilyonectria rdicicola species complex is commonly associated with root rot disease symptoms in ginsneg. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall-degrading enzymes (CWDE). Methods and Results : To establish a rapid and accurate detection of Ilyonectria rdicicola, a species-specific primer was developed based on the putative genes of cell wall–degrading enzyme (pectinase, polygalactose, xylanase, xylosidase). Species-specific primer based on the DNA sequences of gene amplified about 200 - 300 bp polymerase chain reaction (PCR) product for Ilyonectria mors-panacis. Conclusion : The primer pair yielded the predicted PCR product size exactly in testing with target pathogen DNAs, but not from the other species of Ilyonectria and species of other phytopathogenic fungi. The primer pair also showed only the species-specific amplification curve on realtime PCR on target pathogen DNA. The detection sensitivity of real time PCR using species-specific primer pair was 10 to 100 times higher than conventional PCR, with 1 to 10 pg/㎕. The approach outlined here could be further utilized as a rapid and reliable tool for the diagnosis and monitoring of the root rot of ginseng.
        6.
        2013.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        본 연구에서는 청수 포도의 양조 특성에 미치는 세포벽 분해효소와 침용 처리의 효과를 조사하였다. 착즙의 용이 성은 세포벽분해효소 처리와 침용처리에서 우수하였으며, 착즙액의 방향은 5일간 침용처리 후 압착한 것이 가장 우수 하였다. 또한 착즙수율도 대조구에 비하여 세포벽분해효소 와 침용처리에서 크게 증가하는 것으로 나타났다. pH와 총산, 가용성고형물은 처리간에 큰 차이가 없었으며, pH는 3.1-3.4, 총산은 0.5~0.6%, 가용성고형물은 6.7~7.1 °Brix 의 범위를 나타내었다. 알코올 함량은 세포벽분해효소 처 리구가 13.3% 으로 가장 높았으며, 침용처리구는 상대적으 로 알코올 함량이 낮은 특징을 보였다. 총 폴리페놀 함량은 침용처리 기간이 길어질수록 증가하는 경향이었으며, 10일 간 침용처리시 306.4 mg/L로서 가장 높은 값을 나타내었다. 청수와인의 주요 유기산은 사과산과 주석산이었으며, 구연 산, 호박산 및 젖산도 검출되었다. 본 연구에서 세포벽분해 효소와 침용처리는 청수와인 제조에 있어서 착즙의 용이성 을 더 좋게 하며, 착즙수율이나 휘발성성분을 증가시키는 것으로 나타났다.
        7.
        1996.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The cell wall components of fruit include cellulose. hemicellulose, pectin, glycoprotein etc., and the cell wall composition differs according to the kind of fruit. Fruit softening occurs as a result of a change in the cell wall polysaccharides : the middle lamella which links primary cell walls is composed of pectin. and primary cell walls are decomposed by a solution of middle lamella caused due to a result of pectin degradation by pectin degrading enzymes during ripening and softening, During fruit ripening and softening, contents of arabinose and galactose among non-cellulosic neutral sugars are notably decreased, and this occurs as a result of the degradation of pectin during fruit repening and softening since they are side-chained with pectin in the form of arabinogalactan and galactan Enzymes involved in the degradation of the cell wall include polygalacturonase, cellulose, pectinmethylesterase, glycosidase, etc., and various studies have been done on the change in enzyme activities during the ripening and softning of fruit. Among cell wall-degrading enzymes, polygalacturonase has the greatest effect on fruit softening, and its activity Increases during the maturating and softening of fruit. This softening leads to the textural change of fruit as a result of the degradation of cell wall polysaccharides by a cell wall degrading enzyme which exists in fruit.
        8.
        1995.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This paper was investigated the changes of the cell wall components, enzyme activities during ripening of jujuba fruits for elucidating the softening metabolism of jujuba fruits. Firmness were decreased during ripening. Moisture content did not show any notable cahanges until ripening stage but they decreased a little In overripe jujuba fruits. Polygalacturonase activities were not detected at nature green stage and -galactosidase activities were until turning stage. But polygalacturonase activities in ripening and overripening were 51.31 and 100.72 units/100g-fr, wt. respectively. -galactosidase activities were 16.05 and 182.55units/100g-fr. wt. in the same stages. The content of water-soluble protein was increased in overripening. Stage the contents of cell wall and alcohol-insoluble material were. decraesed during maturation, but water-soluble material was increased. The pectin and alkali-soluble hemicellulose were increased until ripening stage, but decreased in overripe jujube fruits. The total pectin and insoluble pectin during ripening, but decreased in overripe jujuba fruits.
        9.
        1995.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        This paper was carried out to investigate changes in chromatograms of polysacctatides and soluble pectins on Sephadex G-50 and non-cellulosic neutral sugars of polysaccharides isolated from cell wall of persimmon fruits treated with polygalacturonase and -galactosidase in vitro. The chromatogram pattern of soluble pectins extracted from cell wall treated with -galactosidase on Sephacryl S-500 column were similar to those of untreatment, but contents of soluble pectins treated with -galactosidase were different from those of untreatment. The patterns of chromatograms In soluble pectins extracted from cell wall treated with polygalacturonase were more complex and lower molecular polymer than those of other cell wall-degrading enzyme treatments. Non-cellulosic neutral sugar of polysaccharides in fraction I of soluble material treated with polygalacturonase was rhamnose, those in fraction II were similar to those in fraction III and contents of arabinose, xylose and glucose were higher than contents of other non-cellulosic neutral sugars. Non-cellulosic neutral sugars of polysaccharides in fraction I in soluble material by -galactosidase treatment were rhamnose, arabinose, galactose and mannose. Content of glucose of polysaccharides in fraction II was higher than that in fraction I . Non-cellulosic neutral sugars treated with mixed enzyme were rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose. Compositions of non-cellulosic neutral sugars of polysaccharides in fraction I were similar to those in fraction II and III.