검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        4.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 기존의 POM(Princeton Ocean Model) WAD(Wetting and Drying) 모형을 연안역에서 조석조류의 계산에 적합하도록 개경계에서 조석조화상수를 입력하여 사용할 수 있도록 하였고, CTS(Computing Time Saving) 기법을 도입하여 계산시간을 단축할 수 있도록 개선하였다. 이와 같이 수정된 모형은 장방형 내만에 하나의 절점을 갖는 정상파에 대한 해석해 실험과 유속 및 열확산에 대한 수리모형 실험결과와 비교하여 좋은 결과를 얻었다. 그리고 간석지가 발달한 광양만의 현지해역에 이 CTS 기법을 적용하여 계산시간이 39.4% 단축되는 결과를 얻었다.
        4,200원
        6.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        어류 축양을 목적으로 외해에 설치되는 대형 가두리 시설은 해양환경 조건으로부터 다양한 외력을 받으며, 이러한 외력에 의한 가두리의 동태는 가두리 시설 자체의 안전과 축양물의 생존과 성장에도 큰 영향을 준다. 그러므로 가두리를 설계하는 단계에서 외력에 의한 가두리의 역학적 움직임을 정확히 파악할 수 있다면 보다 안전하고 효율성 있는 구조물을 설치 할 수 있을 것이다. 본 연구에서는 원형 가두리에 대하여 조류에 따른 가두리의 동역학적 운동을 해석하기 위하여 이론 모델을 구성하여 수치해석을 하였다. 이 때 수조실험을 통해 흐름에 놓여지는 망지의 여러 조건에 따른 망지 후방의 유속감소율을 적용함으로써 수치계산의 정확도를 높였다. 또한 수치 계산에 의한 시뮬레이션의 결과와 모형 실험에 의한 결과를 비교 분석하였다. 본 연구에서 얻어진 결과를 요약하면 다음과 같다. 1. 유속이 일정할 때 망지의 d/1가 커질수록 망지를 통과한 후의 유속은 감소하였다. 2. 망지의 d/1가 일정할 때, 유속이 커질수록 망지를 통과한 후의 유속은 증가하였다. 3. 망지의 d/1와 유속이 일정할 때, 망지로부터의 영각이 커질수록 망지를 통과한 후의 유속은 감소하였다. 4. 평면 망지 실험에서 얻어진 유속감소율을 적용한 시뮬레이션에 의한 수종 형상과 모형 실험에 의한 가두리의 수중 형상을 비교한 결과, 오차는 ± 5 % 이내로 나타나 실험결과에 대한 시뮬레이션의 결과가 잘 일치함을 나타내었다.
        4,200원
        7.
        2003.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        중층 연승어구의 수중형상과 낚시의 심도는 어획성능을 좌우하는 중요한 요소하다. 또한 매조업시마다 얻어지는 낚시별 어획어종, 크기등과 같은 조획 데이터의 체계적인 관리와 분석도 향후 조업을 위한 지표로서 고려되어야 한다. 본 연구에서는 유향.유속에 따른 어구의 수중 형상을 시뮬레이션하여 해석하였고, 해석의 정확성을 검증하기 위해서 모형실험을 실시하였다. 또한 시뮬레이션에서 얻어진 각 낚시별 심도 정보를 활용하여, 낚시별로 사용한 미끼와 어획된 어종의 자료를 처리할 수 있는 데이터베이스 시스템을 구축하였다. 본 연구에서 얻어진 결과를 요약하면 디음과 같다. 1. 영각과 단축률이 일정할 때, 유속이 증가함에 따라 낚시의 심도는 유속에 비례해서 감소하였다. 2. 단축률과 유속이 일정할 때, 영각이 증가함에 따라 낚시의 심도는 영각에 비례해서 감소하였다. 3. 영각과 유속이 일정할 때, 단축률이 증가함에 따라 낚시의 심도는 단축률에 비례해서 감소하였다. 4 시뮬레이션에 의한 수중 형상과 모형어구의 수중 형상을 비교한 결과, 오차는 ±3% 이내로 나타나 실험결과에 대한 시뮬레이션의 결과가 잘 일치함을 나타내었다. 5 본 연구에서 시뮬레이션에서 얻어진 낚시 심도정보를 활용한 조획률 데이터베이스 시스템은 여러 파라미터들 예를 들어 미끼, 낚시 섬도 등에 따라서 어획어의 종류와 크기를 분석할 수 있어서, 현장의 조획 데이터의 관리 및 분석에 많은 도움을 줄 수 있을 것이다.
        4,500원
        10.
        2011.05 KCI 등재 서비스 종료(열람 제한)
        하천 홍수해석 분야에서 가장 널리 이용되고 있는 1차원 동수역학 수치모형의 입력자료는 상하류단 경계조건, 조도계수, 하도단면 등이며, 계산 시간간격 및 거리간격의 선정은 계산결과의 정확성, 안정성, 효율성 확보를 위한 핵심 요소이다. 본 연구에서는 기존 단면간격 선정기법의 이론적 배경을 검토하였고, 매 시간단계별로 도출되는 흐름특성을 반영하여 계산거리간격을 추정하는 가변 계산거리간격 추정 기법을 제안하였다. 제안된 기법을 1차원 부정류 수치모형과 연계하
        11.
        2004.05 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 하상변동 및 유사입자의 시간적 공간적 분포를 동시에 모의할 수 있는 2차원 수치모형을 제시하였다. 사행수로의 하상변동은 만곡부의 외측에서는 하상이 세굴되고 훨씬 더 거친 입경의 재료로 구성되며, 만곡부의 내측에서는 하상이 상승하고, 세립토로 구성되었다. 또한 사행하천에서 흐름의 방향에 대한 입자분포 과정은 상류의 변곡점에서 시작하여, 하류 변곡점에서 마치게 되는 것을 보여주었다. 하천의 경계가 불규칙하고 복잡한 하천에서는 혼합사호 형성된
        12.
        2001.03 서비스 종료(열람 제한)
        A numerical model for practical use based on the 1-line theory is presented to simulate shoreline changes due to construction of offshore structures. The shoreline change model calculates the longshore sediment transport rate using breaking waves. Before the shoreline change model execution, a wave model, adopting the modified Boussinesq equation including the breaking parameters and bottom friction term, was used to provide the longshore distribution of the breaking waves. The contents of present model are outlined first. Then to examine the characteristics of this model, the effects of the parameters contained in this model are clarified through the calculations of shoreline changes for simple cases. Finally, as the guides for practical application of this model, several comments are made on the parameters used in the model, such as transport parameter, average beach slope, breaking height variation alongshore, depth of closure, etc. with the presentation of typical examples of 3-dimensional movable bed experimental results for application of this model. Here, beach change behind the offshore structures is represented by the movement of the shoreline position. Analysis gives that the transport parameters should be taken as site specific parameters in terms of time scale for the shoreline change and adjusted to achieve the best agreement between the calculated and the observed near the structures.