검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 106

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400oC. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitchderived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.
        4,000원
        3.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).
        4,000원
        4.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The shell & tube-type heat exchanger has been frequently used because it shows simple structure, easy manufacturing and wide operation conditions among many heat exchangers. This study aims to investigate the characteristics for thermal flow of coolant and the possibility of damage for tube equipped with shell due to thermal stress. For these purposes, The thermal flow of coolant in tube was simulated using ANSYS-CFX program and thus the behaviors of coolant were evaluated with standard k-ε turbulence model. As the results, as the flow rate of coolant in tube was increased, the mean relative pressure was also increased with quadratic curve, however, as the surface temperature of tube was increased, mean temperature difference was linearly increased. Finally it showed that the damage of tube could be predicted, that is, which tube was the most weak due to thermal stress.
        4,000원
        5.
        2022.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.
        4,000원
        8.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.
        4,000원
        9.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 탄소나노튜브/보강섬유/폴리머 복합 쉘에 대한 동적응답을 다루었다. 단일벽 탄소나노튜브, 유리섬유 및 에폭시 레진으로 구성된 3단계 복합구조이며, 유효 물성값은 멀티스케일 해석을 통하여 산정하였다. 유한요소 프로그램인 ABAQUS를 적용하여 다양한 탄소나노튜브 함유비율, 적층각도, 곡률 및 중앙 개구부의 다양한 변화에 대한 동적응답 및 상호 작용을 분석하였다. 본 연구는 원통형 복합쉘의 동적 하중에 의한 처짐을 감소시킬 수 있는 변수들의 중요성을 보여주었다.
        4,000원
        11.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 중앙 개구부를 갖는 카본나노튜브/유리섬유/폴리머 합성 복합 적층쉘을 다루었다. 수정된 Halpin-Tsai 모델과 마이크로 역학적 접근방법은 단일벽 탄소나노튜브의 합성 비율에 따른 탄성적 물성변화를 추정하기 위하여 적용되었다. 유한요소 해석을 통하여 쉘의 고유진동 및 모드 특성을 분석하였다. 탄소나노튜브의 무게 비율, 보강섬유 각도, 개구부 크기, 고 유진동수 및 고유모드의 상관관계를 규명하였다. 개구부를 갖는 경우와 갖지 않는 경우에 대하여 곡률 변화에 따른 기존 문헌 과의 비교를 통하여 본 연구결과를 검증하였다. 본 연구결과는 고유진동 특성에 영향을 미치는 탄소나노튜브 보강의 중요성을 보여준다.
        4,000원
        13.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for SiO2@Au core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.
        4,000원
        14.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 NURBS 기반 아이소 지오메트릭 쉘 해석을 위해 다중 패치 해석 모델을 정식화하였다. 기존 연구를 통해 개발된 단일 패치로 구성된 전단 변형을 고려한 쉘 요소에 대해 일반 좌표계에서 기하학적으로 엄밀한 쉘 구조물의 아이소지오메트릭 해석 모델을 도입하고 매개변수 연속성을 고려하여 다중 패치 모델로 확장하였다. 인접 곡면의 노트 요소가 결합 경계를 통해 조화를 이루는 경우에 대해 0차와 1차 매개변수 연속성 조건을 고려하였으며, 두 패치 간 마스터-슬레이브 관계를 정립하여 종속된 한 곡면의 자유도를 상대 곡면의 자유도로 표시하여 모델 크기를 줄이면서 두 곡면을 결합하였다. 다중 패치 쉘 예제에 대해 0차와 1차 연속성 조건을 각각 적용하여 구조해석을 수행하여 1차 연속성 조건의 주요한 특성들을 확인하였다. 또한 각 연속성 조건에 대한 해의 수렴 특성을 검토하였으며 결합 경계에서의 두 패치의 연속성을 확인하였다.
        4,000원
        15.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost SiO2 spheres to rareearth phosphor (YVO4:Eu3+, YVO4:Er3+, and YVO4:Nd3+) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The SiO2 sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core–shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of SiO2 nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of Eu3+, Er3+, and Nd3+. Moreover, the photoluminescent properties of the core–shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost SiO2 for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.
        4,000원
        16.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 CeO2 표면에 Ti(SO4)2의 가수 분해를 이용하여 TiO2를 성장시켜 코어-쉘 구조를 가지는 세라믹 나노입자를 합성 하였다. CeO2/TiO2 코어-쉘 합성에서는 CeO2:TiO2의 몰비, 반응 시간, 반응 온도, CeO2 슬러리 농도, Ti(SO4)2의 pH 조절을 통하여 코어-쉘 구조를 가지는 최적의 합성 조건을 찾았다. CeO2:TiO2의 최적의 몰비는 1:0.2~1.1, 최적의 반응 시간은 24 시간, 최적의 CeO2 슬러리 농도는 1%, 최적의 반응 온도는 50℃임을 알 수 있었다. NH4OH 수용액을 이용하여 Ti(SO4)2 의 pH를 1로 맞추어 CeO2 슬러리에 적하하면 10%의 농도를 가지는 CeO2 슬러리에서도 CeO2/TiO2 코어-쉘 나노 입자를 합성할 수 있었다. 80℃이상의 높은 온도에서 반응을 시키면 CeO2/TiO2 코어-쉘 구조가 아닌 독립된 TiO2 나노 입자를 형성함을 알 수 있었다. 최적의 반응 온도는 50℃로서 가장 좋은 구조의 CeO2/TiO2 코어-쉘이 합성되었다.
        4,000원
        17.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigate the optical properties of InP/ZnS core/shell quantum dots (QDs) by controlling the synthesis temperature of InP. The size of InP determined by the empirical formula tends to increase with temperature: the size of InP synthesized at 140oC and 220oC is 2.46 nm and 4.52 nm, respectively. However, the photoluminescence (PL) spectrum of InP is not observed because of the formation of defects on the InP surface. The growth of InP is observed during the deposition of the shell (ZnS) on the synthesized InP, which is ended up with green-red PL spectrum. We can adjust the PL spectrum and absorption spectrum of InP/ZnS by simply adjusting the core temperature. Thus, we conclude that there exists an optimum shell thickness for the QDs according to the size.
        4,000원
        18.
        2016.04 구독 인증기관 무료, 개인회원 유료
        This study is about the basic design technology to radically increase the structural stability of structural shell or tube, which are utilized in a variety of large structures like aircrafts, plant, bridges and buildings. Recent studies have revealed that the plates stiffened by closed-sections ribs can be designed to have greater strength as well as the reduction of used number of stiffeners. Then, the analytical models were selected based on the huge steel tube design and the finite element modeling has been conducted using the ABAQUS. Through this study, the elastic buckling strengths are compared with the flat plate buckling stress and the improved effect in the local buckling strength due to the closed-section ribs are numerically verified.
        3,000원
        19.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        BaTiO3-coated Fe nanofibers are synthesized via a three-step process. α-Fe2O3 nanofibers with an average diameter of approximately 200 nm are first prepared using an electrospinning process followed by a calcination step. The BaTiO3 coating layer on the nanofiber is formed by a sol-gel process, and a thermal reduction process is then applied to the core-shell nanofiber to selectively reduce the α-Fe2O3 to Fe. The thickness of the BaTiO3 shell is controlled by varying the reaction time. To evaluate the electromagnetic (EM) wave-absorbing abilities of the BaTiO3@Fe nanofiber, epoxy-based composites containing the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss increases to the high frequency region without any degradation. Our results demonstrate that the BaTiO3@Fe nanofibers obtained in this work are attractive candidates for electromagnetic wave absorption applications.
        4,000원
        1 2 3 4 5