검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Currently, the Korea Atomic Energy Research Institute (KAERI) is planning to build the Ki-Jang Research Reactor (KJRR) in Ki-Jang, Busan. It is important to safely dispose of low-level radioactive waste from the operation of the reactor. The most efficient way to treat radioactive waste is cement solidification. For a radioactive waste disposal facility, cement solidification is performed based on specific waste acceptance criteria such as compressive strength, free-standing water, immersion and leaching tests. Above all, the leaching test is important to final disposal. The leakage of radioactive waste such as 137Cs causes not only regional problems but also serious global ones. The cement solidification method is simple, and cheaper than other solidification methods, but has a lower leaching resistance. Thus, this study was focused on the development of cement solidification for an enhancement of cesium leaching resistance. We used Zeolite and Loess to improve the cesium leaching resistance of KJRR cement solidification containing simulated KJRR liquid waste. Based on an SEM-EDS spectrum analysis, we confirmed that Zeolite and Loess successfully isolated KJRR cement solidification. A leaching test was carried out according to the ANS 16.1 test method. The ANS 16.1 test is performed to analyze cesium ion concentration in leachate of KJRR cement for 90 days. Thus, a leaching test was carried out using simulated KJRR liquid waste containing 3000 mg·L-1 of cesium for 90 days. KJRR cement solidification with Zeolite and Loess led to cesium leaching resistance values that were 27.90% and 21.08% higher than the control values. In addition, in several tests such as free-standing water, compressive strength, immersion, and leaching tests, all KJRR cement solidification met the waste acceptance or satisfied the waste acceptance criteria for final disposal.
        4,200원
        3.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        폴리머 시멘트 고화체는 일반 몰타르 내의 시멘트 수화물을 폴리머 개질제를 이용하여 부분적으로 대 체함으로써 그 기능을 강화시킨 복합재료로써, 특히 시멘트 몰타르에 폴리머를 첨가하는 것은 그 화학적 내구성을 향상시킨다고 알려져 있다. 따라서 본 연구에서는 고화재료로서의 폴리머 시멘트에 대한 낮은 침투성 및 낮은 이온 확산도 등과 같은 향상된 화학적 내구성을 확인하기 위하여 폴리머 시멘트 시편들을 제조하였다. 이때 폴리머의 함량은 0에서부터 30%까지 변화시켰으며, 물에 대한 시멘트 비(W/C)를 33%와 50%로 각각 유지 시켰다. 충분히 경화시킨 후에, 제조된 시편들에 대한 구조적 건전성을 압축강도와 수침법에 의한 공극도를 통하여 평가하였다. 그 결과, W/C 비가 33%이고, 폴리머 함량이 약 10%인 폴리 머 시멘트 시편에서 가장 향상된 개질변화를 얻을 수 있었다. 끝으로 이 최적의 조합비를 가지는 시편에 대하여 ANS 16.1에 따르는 침출시험을 수행하였으며, 그 결과를 일반 시멘트 고화체와 비교하였다.
        4,000원
        13.
        2022.03 KCI 등재 서비스 종료(열람 제한)
        본 연구는 원자력 시설 해체 시 발생되는 저준위 및 극저준위 폐토양, 점토와 산업부산물인 고로슬 래그를 이용하여 방사성 폐기물을 안전하게 담지할 수 있는 비소성 시멘트의 제조 가능성을 평가하고 광물· 형태학적 분석을 통하여 생성된 반응 물질에 대하여 고찰하였다. 본 연구에서는 (1) 폐토양, 점토 및 고로슬 래그의 특성 분석, (2) 폐토양, 점토 및 고로슬래그를 고화재 및 성분조정제로 이용한 원전 해체 폐기물 담지를 위 한 비소성 시멘트 제조 및 최적의 배합 비율 도출, (3) 제조된 비소성 시멘트 고화체의 수화반응 생성물질에 대하여 광물·형태학적 분석 등을 수행하였다. 비소성 시멘트 고화체의 광물·형태학적 분석 결과, 폐토양과 점 토는 수화반응 생성물이 관측되지 않았으며, 고로슬래그의 경우 고화체의 강도를 발현시킬 수 있는 수화반응 생성물질인 calcium silicate hydrate (CSH), 에트링가이트(ettringite)가 생성되는 것을 확인하였다. 폐토양, 점 토를 고화재로 이용한 비소성 시멘트의 재령 28일 후 고화체는 최적의 배합 비율에서 약 3 MPa의 강도를 나 타내 처분장 인수기준 압축강도인 3.44MPa를 만족하지 못하는 것을 확인하였다. 그러나, 고로슬래그를 고화 재로 이용한 비소성 시멘트는 모든 실험 조건에서 처분장 인수기준 압축강도를 만족하며, 최적의 배합 비율 에서는 약 27 MPa로 높게 나타나는 것을 확인할 수 있었다. 이러한 결과를 통하여 비소성 시멘트 고화재로 고로 슬래그, 방사성 핵종에 대한 흡착제 역할로 폐토양 및 점토를 이용한다면 방사성 폐기물 처분을 위한 최적의 비소성 시멘트를 제조할 수 있을 것으로 판단된다.
        14.
        2019.10 서비스 종료(열람 제한)
        원자력발전소 해체과정에서 발생하는 폐기물 중 가장 큰 비중을 차지하는 것은 콘크리트 재료이다. 일반적적으로 콘크리트의 방사화는 시멘트 페이스트에 집중되기 때문에 방사화된 시멘트 페이스트만 고화처리를 하고 굵은 골재를 재활용할 수 있다면 원자력발전소 해체 과정에서 발생하는 폐기물의 양을 현저하게 감소시킬 수 있다. 본 연구에서는 저준위 방사화 콘크리트의 처리방안 개발을 위한 기초연구를 목적으로 수행되었으며, 이를 위하여 20년 이상 경과한 폐콘크리트에서 분리한 미분말을 고화처리하는 방법에 대하여 검토하고자 하였다.
        1 2