검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 48

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study provides fundamental information on the temperature variations in tunnel structures during severe fire events. A fire event in a tunnel can drastically increase the internal temperature, which can significantly affect its structural safety. METHODS : Numerical simulations that consider various fire conditions are more efficient than experimental tests. The fire dynamic simulator (FDS) software, based on computational fluid dynamics (CFD) and developed by the National Institute of Standards and Technology, was used for the simulations. The variables included single and multiple accidents involving heavy goods vehicles carrying 27,000 liters of diesel fuel. Additionally, the concrete material characteristics of heat conductivity and specific heat were included in the analysis. The temperatures of concrete were investigated at various locations, surfaces, and inside the concrete at different depths. The obtained temperatures were verified to determine whether they reached the limits provided by the Fire Resistance Design for Road Tunnel (MOLIT 2021). RESULTS : For a fire caused by 27,000 liters of diesel, the fire intensity, expressed as the heat release rate, was approximately 160 MW. The increase in the carrying capacity of the fire source did not significantly affect the fire intensity; however, it affected the duration of the fire. The maximum temperature of concrete surface in the tunnel was approximately 1400 ℃ at some distance away in a longitudinal direction from the location of fire (not directly above). The temperature inside the concrete was successfully analyzed using FDS. The temperature inside the concrete decreased as the conductivity decreased and the specific heat increased. According to the Fire Resistance Design for Road Tunnel (MOLIT 2021), the internal temperatures should be within 380 ℃ and 250 ℃ for concrete and reinforcing steel, respectively. The temperatures were found to be approximately 380 ℃ and 100 ℃ in mist cases at depths of 5 cm and 10 cm, respectively, inside the concrete. CONCLUSIONS : The fire simulation studies indicated that the location of the maximum temperature was not directly above the fire, possibly because of fire-frame movements. During the final stage of the fire, the location of the highest temperature was immediately above the fire. During the fire in a tunnel with 27,000 liters of diesel, the maximum fire intensity was approximately 160 MW. The capacity of the fire source did not significantly affect the fire intensity, but affected the duration. Provided the concrete cover about 6 cm and 10 cm, both concrete and reinforcing steel can meet the required temperature limits of the Fire Resistance Design for Road Tunnel (MOLIT 2021). However, the results from this study are based on a few assumptions. Therefore, further studies should be conducted to include more specific numerical simulations and experimental tests that consider other variables, including tunnel shapes, fire sources, and locations.
        4,200원
        3.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, computer simulation of the drawbridge structure was performed to verify the validity of the design and to evaluate its safety. For this, the follower bracket was modeled, and the parts of the follower bracket were connected using 1D elements. The boundary condition applied moments to the rotation shaft of the girder gear in the clockwise and counterclockwise directions, and the connection between the upper parts was modeled using 1D elements to model the bolted connection. In case of rotational shaft deformation, an analysis was performed on the displacement occurring in the structure during the opening/closing operation. As a result of structural analysis of the follower bracket for various cases, the stress at the connection was lower than the tensile strength and yield strength, so it was evaluated as safe. Through this, we intend to use it as a data that can identify anomalies.
        4,000원
        4.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes a method to evaluate the structural safety of a large wide-width greenhouse structure against wind load caused by a typhoon through a fluid structure interaction analysis technique. The conventional method consisted of roughly estimating the wind load based on the relevant laws and regulations, and determining safety through structural analysis. However, since the wind load changes nonlinearly according to the wind speed distribution and wind direction around the greenhouse and the external shape of the structure, there are many uncertainties in the existing structural safety evaluation method, and it is difficult to accurately determine the design margin. In this study, a systematic method was developed to accurately calculate the wind load acting on a greenhouse structure and evaluate structural safety by considering the characteristics of wind through a fluid structure interaction analysis using coupled computational fluid dynamics and computational structural mechanics. Using the proposed method, it is possible to significantly reduce the manufacturing cost because it is possible to obtain an optimal design that reduces the over-conservative design margin while securing the structural strength of the greenhouse.
        4,000원
        10.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tomb of King Muryeong, located in Sonsan-ri, was found vulnerable due to leakages during since the summer of 2016. This research aims to evaluate structural safety of the Tomb under the tumulus. Site surveys were conducted to find vulnerable inner parts. Structural safety assessment is presented based on both site survey results and analytical results obtained through FEM analysis using the ANSYS program. The underground structure was explicitly modeled to focus on two types of loadings: design loads and actual gravity loads. In general, the tomb does not show any critical deflection increase or damage through the analytical investigation. However, maintenance through continuous monitoring is necessary to prevent severe deflections and stress concentrations since the rigidity of the tomb materials are very vulnerable and likely to be reduced due to prolonged weathering and continuous rain leakage.
        4,000원
        11.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we analyzed the safety on static and dynamic characteristics of a top-down evacuation instrument fixed on the exterior walls of a building using finite element analysis. For this purpose, the stress distribution characteristics of the H-beam structure were analyzed and the equivalent stress distribution, deflection displacement and natural frequency characteristics of the overall structure of the evacuation instrument were analyzed. The structures were applied with the materials of SS440 and SUS304. The static analysis results showed the elastic behavior with safety coefficients from 2.4 to 2.9, by confirming the structural safety. In addition, the analysis of the natural frequency characteristics confirmed that the vibration characteristics were higher than the external conditions of 20Hz.
        4,000원
        12.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 실제 공연장을 예제 건물로 하여 공연장에 발생한 진동을 측정한 결과를 바탕으로 공연장 구조물의 안전성에 대해 해석적으로 평가하였다. 수치해석 프로그램은 MIDAS GEN을 사용하였으며, 바닥판은 합성효과를 고려하여 모델링 하였다. 해석결과 진동계측실험을 통해 구한 바닥판 고유진동수와 유사한 결과를 보였다. 또한 군중의 율동에 의한 동적하중을 시간이력해석으로 해석하여 진동계측 실험과 유사한 수준의 바닥판 가속도 응답을 확인하였다. 이 모델을 사용하여 예제 공연장의 최대관람인원인 400명의 집단율동 시 발생하는 상황에 대하여 분석하였다. 그 결과 기둥과 보의 가해지는 외력은 설계 내력을 하회하여 안전성에 문제없음을 확인하였다. 또한 공연 시 발생하는 수평방향 진동수준은 지진하중의 2% 수준으로 수직수평 모두 안전성에 문제가 없는 것을 확인하였다.
        4,000원
        13.
        2017.04 구독 인증기관 무료, 개인회원 유료
        Climate change resulted in the growing occurrence frequency of typhoons, and the damage it caused was also increasing. In this study, the soundproofing and windproof walls installed on the domestic road were modeled by using ABAQUS, a commercial finite element analysis program. Correspondingly, steel column, aluminum frame and transparent acrylic plate were modeled. Based on the result from individual part of soundproof wall model, the number of soundproof wall parts for optimal design was determined to be five parts. The design standard of road construction barrier was applied to this optimum model to perform the safety evaluation for strong wind disaster. In the future, it will be possible to improve the guidelines for design of soundproofing walls in Korea by carrying out further experiment to increase the reliability of safety evaluation of soundproofing walls.
        3,000원
        14.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With increasing demands of transportation services for disabled or aged people, who need wheelchairs, it is recommended to install wheelchairs inside automotive vehicles. However, wheelchairs are not effectively safe devices during car crash unless they are properly fixed. So far, few data have been found related to wheelchair safety or characteristics during car crash, therefore, frontal crash simulations have been carried out based on the FE models of a dummy and a conventional wheelchair including the wheelchair fixing belts and the install plate in the present study. Head injury criteria (HIC) and motion criteria (MC) are investigated and the optimum value of the design variable was found by the Robust design.
        4,000원
        15.
        2015.11 구독 인증기관 무료, 개인회원 유료
        This study on Structural analysis of kickboard used two types suspension systems. Kickboard is very dangerous in rider because of unstable in diving conditions. Thus suspension system of kickboard are very important component parts. This study focus on two suspensions for stability in kickboard which coil spring and aluminium leaf spring.
        4,000원
        16.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The many parts in the hydraulic equipments subject to load by hydraulic pressure. And some parts which are installed to the inside of the hydraulic equipments subject to load by the hydraulic pressure as well as the fluid speed. The inside of the valve generally generates the flow. Considering the valve expansion or the flow of the large valve, the flow is similar to the fluctuation flow in the opened flow system. In this study, the analysis of the flow including the fluctuation are performed and this results will apply to the optimal shape design of the flow path. The load acting on the structure was analysed according to the change in the shape and flow speed of the structure which install in fluid, and the safety evaluation wad investigated in consideration of the flow speed and the depth of fluid.
        4,000원
        17.
        2015.04 구독 인증기관·개인회원 무료
        This study presented the analytical safety evaluation of precast modular bridge super-structure, using standardized modular members and robotic construction during the transportation routing and lifting conditions. In order to evaluate the safety performance of the bridge system, linear and nonlinear 3D full scale Finite Element (FE) for 12 m and 16 m standardized modular blocks was developed in ABAQUS and then analytical study was classified into two different structural systems according to steel girder structures: 1) modular bridge block lifting method including the steel girder system; 2) modular bridge block lifting method without the steel girder system. As a result, in analytical study, the results revealed that the maximum stress of each modular member was in maximum allowable stresses, during lifting condition. However, the stress concentration at the connected area was more critical in comparison to the behavior of entire modular blocks both 12 m and 16m, during lifting time.
        18.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        인양장비는 원자력발전소에서 발생하는 사용후핵연료를 운반하는 운반용기를 인양하기 위해 사용된다. 본 연구는 원자력 안전위원회고시 제2013-27호와 미국 10CFR Part 71 §71.45에서 규정하는 기술수준에 따라 이론적인 방법과 유한요소방법 으로 인양장비의 구조적안전성을 평가하였다. 이론적으로 평가한 결과 모든 구성 요소에서의 응력이 응력제한치 내에 있어 운영상 발생하는 구조적 안전성을 확보하고 있는 것으로 판단하였다. 또한 유한요소해석을 통한 평가결과, 항복과 극한조건 모두에서 설계기준을 만족하는 것으로 평가되었다. 모든 구성요소에서 충분한 안전여유도(항복조건에서 3 이상의 안전율, 극한조건에서 5 이상의 안전율)를 갖는 것으로 나타나 구조적으로 안전하다고 판단하였다.
        4,900원
        20.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study carried out passenger safety assessment by real car crash simulation of composite post structures for road facilities. The effects of different material properties of composites for various parameters are studied using the LS-DYNA finite element program for this study. In this study, the existing finite element analysis of steel post structures using the LS-DYNA program is further extended to study dynamic behaviors of the structures made of various composite materials. The numerical results for various parameters are verified by comparing different models with displacements and stress distribution occurred in the post and car.
        4,000원
        1 2 3