검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study selected two labor-intensive processes in harsh environments among domestic food production processes. It analyzed their improvement effectiveness using 3-dimensional (3D) simulation. The selected processes were the “frozen storage source transfer and dismantling process” (Case 1) and the “heavily loaded box transfer process” (Case 2). The layout, process sequence, man-hours, and output of each process were measured during a visit to a real food manufacturing factory. Based on the data measured, the 3D simulation model was visually analyzed to evaluate the operational processes. The number of workers, work rate, and throughput were also used as comparison and verification indicators before and after the improvement. The throughput of Case 1 and Case 2 increased by 44.8% and 69.7%, respectively, compared to the previous one, while the utilization rate showed high values despite the decrease, confirming that the actual selected process alone is a high-fatigue and high-risk process for workers. As a result of this study, it was determined that 3D simulation can provide a visual comparison to assess whether the actual process improvement has been accurately designed and implemented. Additionally, it was confirmed that preliminary verification of the process improvement is achievable.
        4,000원
        3.
        2011.05 KCI 등재 서비스 종료(열람 제한)
        This paper proposes an optimal posture for the task-oriented movement of dual arm manipulator. A stability criterion function which consists of three kinds of feature-representative parameters has been utilized to define the optimal posture. The first parameter is the force which is applied to the object. The torque of each joint and position of arm are attained from the current sensor and encoder, respectively. From these two data, the applied force to an object is estimated using sum of vectors of the joint torques estimated from the measured current. In order to investigate the robustness of each posture, the variation of the end-effector from the encoder information has been utilized as the second parameter. And for the last parameter for the optimality, the total energy consumption has been used. The total consuming energy of each posture can be computed from the current information and the battery voltage. The proposed robot structure consists of a mobile inverted pendulum and dual manipulators. In order to define the optimal posture for the each object, external disturbances are applied to the mobile inverted pendulum robot and the first and second parameters are investigated to find the optimal posture among the pre-selected most representative postures. Finally, the proposed optimal posture has been verified by the proposed stability criterion function which consists of total force to the object, the fluctuation of the end-effector position, and total energy consumption. The effectiveness of the proposed algorithms has been verified and demonstrated through the practical simulations and real experiments.