Autonomous vehicle (AV) technology is rapidly entering the commercialization phase driven by advancements in artificial intelligence, sensor fusion, and communication-based vehicle control systems. Real-world road testing and pilot deployments are increasingly being conducted, both domestically and internationally. However, ensuring the safe operation of AVs on public roads requires not only technological advancement of the vehicle itself but also a thorough pre-evaluation of the road environments in which AVs are expected to operate. However, most previous studies have focused primarily on improving internal algorithms or sensor performance, with relatively limited efforts to quantitatively assess how the structural and physical characteristics of road environments affect AV driving safety. To address this gap, this study quantitatively evaluated the compatibility of road environments for AV operation and defined the road conditions under which AVs can drive safely. Three evaluation scenarios were designed by combining static factors such as curve radius and longitudinal gradient with dynamic factors such as level of service (LOS). Using the MORAI SIM autonomous driving simulator, we modeled the driving behaviors of autonomous vehicles and buses in a virtual environment. For each scenario, the minimum time to collision (mTTC) from the moment the AV sensors detected a lead vehicle was calculated to assess risk levels across different road conditions.The analysis revealed that sharper curves and lower service levels resulted in significantly increased risk. Autonomous buses exhibited a higher risk on downhill segments, autonomous vehicles were more vulnerable to uphill slopes and gradient transitions. The findings of this study can be applied to establish road design standards, develop pre-assessment systems for AV road compatibility, and improve AV route planning and navigation systems, thereby providing valuable implications for policy and infrastructure development.
This paper presents a novel methodology for assessing the vulnerabilities of autonomous vehicles (AVs) across diverse operational design domains (ODDs) related to road transportation infrastructure, categorized by the level of service (LOS). Unlike previous studies that primarily focused on the technical performance of AVs, this study addressed the gap in understanding the impact of dynamic ODDs on driving safety under real-world traffic conditions. To overcome these limitations, we conducted a microscopic traffic simulation experiment on the Sangam autonomous mobility testbed in Seoul. This study systematically evaluated the driving vulnerability of AVs under various traffic conditions (LOSs A–E) across multiple ODD types, including signalized intersections, unsignalized intersections, roundabouts, and pedestrian crossings. A multivariate analysis of variance (MANOVA) was employed to quantify the discriminatory power of the evaluation indicators as the traffic volume was changed by ODD. Furthermore, an autonomous driving vulnerability score (ADVS) was proposed to conduct sensitivity analyses of the vulnerability of each ODD to autonomous driving. The findings indicate that different ODDs exhibit varying levels of sensitivity to autonomous driving vulnerabilities owing to changes in traffic volume. As the LOS deteriorates, driving vulnerability significantly increases for AV–bicycle interactions and AV right turns at both signalized and unsignalized intersections. These results are expected to be valuable for developing scenarios and evaluation systems to assess the driving capabilities of AVs.
Korea has many test beds where various mobility services are provided by automated vehicles. The test beds are operated in their operational design domain (ODD). However, disengagement frequently occurs, even in the ODDs of automated vehicles. In particular, human drivers have to take control of the automated vehicles at SAE Level 3 whenever the vehicles cannot drive by themselves because of an emergency or unknown factors. This study analyzed the driving safety of right turning at signalized intersections where automated vehicles face selfdriving issues because of potential conflicts with other vehicles, crossing pedestrians, and geometric factors. To conduct this analysis, we categorized right-turning intersections into two types with right-turning lanes and channelization islands and divided them into three sections, with a total of six sections. Subsequently, the six sections were compared with each other by disengagements of the automated vehicles as the key index to investigate their self-driving safety. Their significant differences indicate that ODD-related variables must be considered when designing and updating target test beds for automated vehicles.
오늘날 도로의 이동수단은 자율주행자동차와 더불어 전동 킥보드, 전기 자전거 등과 같은 개인형 이동수단의 등장으로 인해 기존 도 로가 수용해야 할 범위는 더욱 광범위해졌으며, 개인형 이동장치의 시장 확대 및 공유서비스로 인한 개인형 이동장치의 교통사고는 급격하게 증가하고 있는 추세이다. 기존 자동차 중심의 설계 및 운영되고 있는 현재의 도로에서는 자동차 이외의 다른 교통수단 이용 자들은 인프라 시설과 서비스 면에서 안전하지 못하고 편리하지 못한 환경으로 인해 잦은 교통사고 발생과 대중교통 이용 기피 등의 문제로 이어지고 있다. 따라서, 현재 도로의 차량 중심 설계에 의한 한계가 드러나고 있으며 이에 대한 해결책으로 모든 도로 교통수 단 및 이용자가 고려되는 완전도로(Complete Streets)에 관한 관심이 증가함에 따라 완전도로 구축에 관한 정책이 필요한 실정이다. 이 에 본 연구에서는 완전도로 구축을 위해 미시적 교통 시뮬레이션 VISSIM을 활용하여 자율주행자동차 레벨 4 수준의 혼입에 따른 교 통흐름 변화를 분석하여 완전도로 구축을 위한 잉여차로 확보 가능성을 검증하는 분석을 진행하였다. 또한, 잉여차로를 활용하여 완전 도로를 구축하기 위해 국외 완전도로 디자인 매뉴얼을 참고하여 국내 도로의 적용이 가능한 평자지표를 안전성, 형평성, 쾌적성을 고려한 요인을 설정하였으며, 계층화 분석법(Analytic Hierarchy Process, 이하 AHP)을 통해 평가요인별 중요도 가중치를 산정하여 완전도로 구축을 위한 완전도로 서비스수준 산정방안을 제 시하였다. 완전도로 구축을 위한 모바일매핑시스템(MMS) 및 인공지능, 드론(UAV)을 활용하여 도로의 현황 모니터링을 진행하였으며, 도출된 평가지표와 가중치를 활용하여 대상 구간에 적용 및 비교를 위해 완전도로 개념과 가깝게 적용된 세종시의 한누리대로와 비교 ㆍ분석하였다. 이를 토대로 완전도로 서비스수준 적용을 통해 도출된 도로의 한계점을 보완한 완전도로 구축방안을 제시하고자 한다.
도로 위 차량의 차로변경은 주변 차량의 움직임에 민감하게 반응해야 하며, 적절한 속도와 타이밍으로 수행하지 못할 경우 교통 흐름을 방해하고 부정적인 영향을 초래할 수 있다. 자율주행차량(Autonomous Vehicle, AV)은 이러한 문제를 해결하기 위해 주변 상황을 정확히 판단하고 인지하여 차로변경을 수행한다. 이때, 안전 관리 전략의 일환으로 최적화된 차로변경 주행 궤적을 제공함으로써 안전하고 효율적인 차로변경을 실현하는 것이 중요하다. 본 연구는 이러한 배경에서 주변 차량과 EGO 차량의 예측 주행 궤적에 기반한 확률론적 개념인 risk field를 계산하고, 이를 활용하여 차량의 종방 향 및 횡방향 안전 궤적을 제시하였다. 이를 위해 고속도로 드론 데이터를 활용하여 차량 간 상호작용 상황을 분석하고, 차로변경 시나리오 데이터를 분류하였다. 연구에서는 주행 속도와 차량의 경위도 등 1.1초 동안의 연속된 주행 데이터를 입력으로 사용하였으며, 다층 인코더-디코더 장단기 메모리 네트워크(EDLN) 모델을 통해 미래 6초 후 차량의 위치를 예 측하였다. 이후 장 이론(field theory)을 기반으로 한 risk field 모형을 통해 도로 위 각 지점의 위험도를 정량화하였다. 또한, 차량의 거동 제약, 주행 편의성, 그리고 안전성 제약 조건을 반영하여 안전 궤적을 생성하였다. 마지막으로, 생성된 궤적이 교통류 안전성에 미치는 영향을 평가하기 위해 예측된 주행 궤적(predicted trajectory)과 실제 주행 궤적(ground truth)을 비교 분석하였다. 평가지표는 대리 안전 지표(surrogate safety measure, SSM) 중 TTC(Time to Collision)와 PET(Post Encroachment Time)를 활용하였다. 본 연구는 제안된 안전성 정량화 및 궤적 생성 방법이 기존 방법론과 비 교하여 우수한 성능을 보임을 입증하였으며, 향후 자율주행차량 혼재 교통류 및 완전 자율주행 교통류에서 높은 효율성 과 안전성을 확보하는 데 기여할 것으로 기대된다.
자율주행 차량이 상용화됨에 따라 연구에 사용할 수 있는 자율주행 차량의 주행궤적 자료를 제공하고 연구하는 기관이 증가하고 있다. 캘리포니아 자동차관리국은 사고 당시 차량의 거동과 주변 환경을 기록한 자율주행 차량 사고 보고서를 제공한다. Waymo는 라이다, 카메라 등을 통해 수집한 자율주행 차량의 실주행 자료를 제공한다. 본 연구에서는 캘리포 니아 자동차관리국에서 제공하는 자율주행 차량 사고 보고서와 Google Street Map을 이용하여 사고 당시의 도로유형과 도로환경요소 및 사고 당시 상황을 파악하고, 베이지안 네트워크(BN)을 통해 자율주행 차량 사고 영향요인을 파악하였 다. 랜덤 포레스트를 통해 앞에서 파악한 자율주행 차량 사고 영향요인들의 변수 중요도를 추출하고 이를 기반으로 자율 주행 차량 주행 시나리오를 도출하였다. 도출한 자율주행 차량 주행 시나리오와 유사한 상황을 보이는 Waymo Open Dataset의 자율주행 차량 실제 주행궤적을 매칭하여 자율주행 차량 주행 행태 기반 사고 위험도 평가 지표를 도출하였 다. 본 연구의 결과는 앞으로 도로환경요소 및 자율주행 차량 주행궤적에 따른 자율주행 차량 주행 안전성 연구의 기반 이 될 것으로 기대된다.
This study collected video footage of accident-risk scenarios on actual roads using automobiles and motorcycles. A total of 191,500 km was driven with three vehicles and one motorcycle, capturing 6,550 near-miss accident videos. The footage was analyzed and categorized based on the 27 parameters of the iGLAD(Initiative for the Global Harmonization of Accident Data) accident categories. Parameters difficult to classify under iGLAD were localized to fit domestic conditions, and further analysis identified areas needing optimization. The categorized data was organized into a web-based database platform, providing statistical analysis and search functions for scenario development. Future use of this data will support the creation of safety evaluation scenarios for autonomous vehicles, enhancing traffic accident investigation and analysis systems. Expanding the database to include data from secondary roads and parking areas is expected to increase its applicability and value.
본 연구는 자율주행상황에서 주관적인 운전 준비도를 객관적으로 측정할 수 있는 심리⋅생리적 지표를 확인하는 것을 목적으로 한다. 51명의 연구대상자가 참여하였고, 설문을 통해 운전 경험, 태도, 운전부하, 상황인식 등을 평가 하였다. 자율주행 중 차량 제어권을 인계받아야 하는 시나리오 동안 심전도를 측정하여 심박변이도 지표를 추출하였 고, 주행 종료 후 연구대상자는 자신의 상태를 평가하였다. 분석 결과, 운전 준비도는 정신적 부하와 부적 상관, 상황 인식과 상황 이해도와는 정적 상관을 보였다. 또한, 심박변이도 지표인 제곱 평균 근간 심박 간격 차이(Root Mean Square of Successive Differences, RMSSD)와 50ms 이상의 연속적인 RR 간격의 차이 비율(proportion derived NN50 by the total number of NN interval, pNN50)과의 유의한 정적 상관관계가 확인되었다. 운전 준비도 수준에 따라 상⋅중⋅하로 나누어 분석한 결과, 높은 운전 준비도 집단은 정신적 부하가 낮고 상황인식 및 상황에 대한 이해 도가 유의하게 높았으며, 자율주행 구간에서 pNN50이 높은 경향이 있었다. 마지막으로 상황인식과 RMSSD가 운전 준비도의 주요 예측 지표로 확인되었다. 이는 운전 준비도가 낮은 운전자는 자율신경 각성이 높고, 높은 운전자는 부교감신경계의 활성화로 인해 심리적, 생리적으로 안정된 상태임을 의미한다. 본 연구는 운전자의 주관적인 운전 준비도를 예측하기 위한 운전자의 심리 및 생리 지표를 확인하였고, 이는 운전자의 운전 준비 상태를 모니터링하는 기술에 적용되어 사고 예방에 기여할 수 있을 것이다.
This study aimed to develop a comprehensive validation methodology for an Infra-guidance system, which is an infrastructure-based service aimed at enhancing the safety of autonomous driving. The proposed method includes quantitative techniques for validating both the Infra-guidance algorithm module and the guidance message module using each optimal indicator. In addition, a promising method is suggested to validate the entire system by applying a multicriteria decision methodology. The relative weight for the algorithm module was higher than relative weight for the message module. Moreover, the relative weight of the latency for the message module was slightly higher than weight of the packet error rate. The proposed methodology is applicable for validating the performance of infrastructure-based services for enhancing connected autonomous driving based on the comprehensive quantification of various factors and indicators.
The purpose of this study was to identify and evaluate hazardous road sections based on roadside friction. Using GIS mapping and clustering techniques, this study analyzed traffic accidents and roadside friction data based on latitude and longitude coordinates. The density-based spatial clustering of applications with noise (DBSCAN) algorithm was applied, with parameters of MinPts = 5 and eps = 0.0001, determined through a K-nearest neighbor analysis. The data were separated based on traffic flow direction (uphill/ downhill), and clustering was performed separately in each direction to identify specific hazard zones. The DBSCAN clustering results revealed 18 clusters in traffic accident data and 44 clusters in roadside friction data. Traffic accident clusters include various types of accidents (e.g., vehicle-to-vehicle and vehicle-to-pedestrian accidents), identifying locations as high-accident zones. The clustering results from the roadside friction data highlighted areas with crosswalks, absence of curbs, and roadside parking zones as major risk sections. Future research should analyze the operational design domain (ODD) of autonomous vehicles on hazardous road sections and explore the integration of multiple data sources to establish a comprehensive safety management system for accident prevention in autonomous driving environments. Additionally, road hazard sections are categorized into stages (e.g., hazardous, cautious, and safe) to enhance the precision in assessing road conditions. This categorization, combined with a detailed analysis of ODD, serves as a foundation for future research aimed at improving the safety of autonomous driving environments.
This study proposes a method to evaluate the publicity of real-time, demand-responsive, autonomous public-transportation systems. By analyzing real-time data collected based on publicity evaluation indicators suggested in previous research studies, this study seeks to establish a system that objectively assesses the publicity of public transportation. Thus, the introduction of autonomous public transportation systems is expected to contribute to solving problems in underserved transportation areas and enable more sophisticated public transportation operations. We reviewed evaluation indicators proposed in previous studies. Based on this review, publicity evaluation indicators were derived and specific criteria were selected to assess systematically the publicity of autonomous public transportation. An AHP analysis was conducted to assess the relative importance of each indicator by analyzing the importance of the selected indicators. Additionally, to score the indicators, minimum and maximum target values were established, and a method for assigning scores to each indicator was examined. The most important factor in the publicity evaluation of autonomous demand-responsive transport (DRT) was the “success rate of allocation to weak public transportation service areas,” with a significance level p of 0.204. This was analyzed as a key evaluation criterion because of the importance of service provision in areas with low-public-transportation accessibility. Subsequently, “Accessing distance to a virtual station” (p = 0.145) was evaluated as an important factor representing the convenience of the service. “Waiting time after allocation” (p = 0.134) also appeared as an important evaluation factor, as reducing waiting time considerably affected service quality. Conversely, “compliance rate of velocity” yielded the lowest significance (p = 0.017), as speed compliance was typically guaranteed owing to autonomous driving technology. This study proposed a specific evaluation method based on publicity indicators to provide a strategic direction for improving services and enhancing the publicity of autonomous DRT systems. These results can serve as a foundational resource for improving transportation services in underserved areas and for enhancing the overall quality of public transportation services. However, the study’s limitation was its inability to use real-time autonomous public transportation data, relying instead on I-MoD data from Incheon. This limitation constrained the ability to establish universal benchmarks because data from various municipalities were not included. Future research should collect and analyze data from diverse regions to establish more reliable evaluation indicators.