검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 79

        1.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The importance of Structural Health Monitoring (SHM) in the industry is increasing due to various loads, such as earthquakes and wind, having a significant impact on the performance of structures and equipment. Estimating responses is crucial for the effective health management of these assets. However, using numerous sensors in facilities and equipment for response estimation causes economic challenges. Additionally, it could require a response from locations where sensors cannot be attached. Digital twin technology has garnered significant attention in the industry to address these challenges. This paper constructs a digital twin system utilizing the Long Short-Term Memory (LSTM) model to estimate responses in a pipe system under simultaneous seismic load and arbitrary loads. The performance of the data-driven digital twin system was verified through a comparative analysis of experimental data, demonstrating that the constructed digital twin system successfully estimated the responses.
        4,000원
        2.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        완공된 건물과 달리 시공 중인 건물은 설계단계와 다른 하중 작용 및 콘크리트 강도 미발현 등 다양한 요인에 의해 설계단계에서 검 토한 하중을 초과하는 하중이 작용하여 건물의 안전성에 문제가 생길 위험이 있다. 또한 시공 중인 건물에 지진이 발생할 경우 더 큰 피해가 발생할 가능성이 있다. 따라서 이 연구는 전형적인 다양한 규모의 5층, 15층, 25층, 60층 예제모델을 작성하고 골조완성도에 따 른 시공단계 모델을 통해 시공 중인 건물의 지진하중의 영향을 분석하였다. 시공 중인 건물의 시공기간은 완공단계 이후의 사용기간 에 비해 매우 짧으므로 설계단계와 동등한 수준의 지진을 적용하는 것은 과도한 하중이 적용될 수 있으므로 시공단계 모델에 재현주 기 50~2,400년의 지진을 적용하여 지진하중을 검토하고 부재단면성능을 분석하였다. 그 결과 설계단계를 초과하는 하중의 여부 및 구조적 안전성 확보가 가능한 수준의 지진재현주기를 검토할 수 있었다. 또한 각 예제모델의 시공기간을 가정하여 시공기간에 따른 지진재현주기를 선정하고 선정한 재현주기의 설계 적절성을 확인하였다.
        4,000원
        3.
        2023.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Considering the non-linear behavior of structure and soil when evaluating a nuclear power plant's seismic safety under a beyond-design basis earthquake is essential. In order to obtain the nonlinear response of a nuclear power plant structure, a time-domain SSI analysis method that considers the nonlinearity of soil and structure and the nonlinear Soil-Structure Interaction (SSI) effect is necessary. The Boundary Reaction Method (BRM) is a time-domain SSI analysis method. The BRM can be applied effectively with a Perfectly Matched Layer (PML), which is an effective energy absorbing boundary condition. The BRM has a characteristic that the magnitude of the response in far-field soil increases as the boundary interface of the effective seismic load moves outward. In addition, the PML has poor absorption performance of low-frequency waves. For this reason, the accuracy of the low-frequency response may be degraded when analyzing the combination of the BRM and the PML. In this study, the accuracy of the analysis response was improved by adjusting the PML input parameters to improve this problem. The accuracy of the response was evaluated by using the analysis response using KIESSI-3D, a frequency domain SSI analysis program, as a reference solution. As a result of the analysis applying the optimal PML parameter, the average error rate of the acceleration response spectrum for 9 degrees of freedom of the structure was 3.40%, which was highly similar to the reference result. In addition, time-domain nonlinear SSI analysis was performed with the soil's nonlinearity to show this study's applicability. As a result of nonlinear SSI analysis, plastic deformation was concentrated in the soil around the foundation. The analysis results found that the analysis method combining BRM and PML can be effectively applied to the seismic response analysis of nuclear power plant structures.
        4,200원
        4.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing reinforced concrete building structures constructed before 1988 have seismically-deficient reinforcing details, which can lead to the premature failure of the columns and beam-column joints. The premature failure was resulted from the inadequate bonding performance between the reinforcing bars and surrounding concrete on the main structural elements. This paper aims to quantify the bond-slip effect on the dynamic responses of reinforced concrete frame models using finite element analyses. The bond-slip behavior was modeled using an one-dimensional slide line model in LS-DYNA. The bond-slip models were varied with the bonding conditions and failure modes, and implemented to the well-validated finite element models. The dynamic responses of the frame models with the several bonding conditions were compared to the validated models reproducing the actual behavior. It verifies that the bond-slip effects significantly affected the dynamic responses of the reinforced concrete building structures.
        4,000원
        5.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        시공 중인 건물은 시공이 완료된 건물과는 다르게 콘크리트의 강도발현이 충분히 이루어지지 않았기 때문에 지진과 같은 자연재해 에 더 취약한 모습을 가질 수 있다. 현재 국내 기준은 건축물의 내진등급별 최소성능 목표를 제시하고 있지만, 설계를 위한 지진하중은 재현주기 2,400년의 지진위험도를 기반으로 한다. 하지만 건물의 시공기간은 건물의 사용기간보다 훨씬 짧기 때문에 재현주기 2,400 년의 지진을 시공 중인 건물에 적용하는 것은 과도하다. 따라서 이 연구는 주거용으로 사용되는 철근콘크리트 건물의 시공 중 지진하 중을 분석하기 위해 5층, 15층, 25층, 60층 건물의 시공단계모델을 작성하고 재현주기에 따라 저감한 지진하중을 적용하여 구조적 안 정성을 확인하였다. 그 결과, 시공기간에 따라 선정한 재현주기의 지진을 적용할 때 구조적 안정성을 확인하였으며, 건물의 규모의 따 라 구조적 안전성을 확보할 수 있는 지진재현주기를 확인하였다.
        4,000원
        6.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 비틀림비정형성과 수직비정형성을 가진 RC 필로티 건축물의 지진동에 대한 거동을 층강성을 적용하여 간단하게 모델링하는 선형 동적해석 프로그램을 개발하고자 한다. 개발된 동적 해석 프로그램을 적용하여 필로티 건축물의 동적 거동 및 필로티층 각 기둥의 전단력을 분석하고, 필로티층에 전단벽 또는 가새를 보강하였을 때 보강효과를 평가하고자 한다. 모서리코어가 있는 필로티 건축물에서 필로티층의 코어 반대편 모서리를 전단벽이나 K형 가새로 보강하였을 때 변위와 기둥 전단력이 크게 감소하는 것으로 나타났으며, 모서리 양면을 K형 가새로 보강하는 것보다 한 면을 전단벽으로 보강하는 것이 보강효과가 큰 것으로 나타났다.
        4,000원
        7.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 유한요소법과 유전알고리즘을 연동하여 지진하중을 받는 구조물의 강성저하(손상) 및 보강 후 효과를 추정하는 방법을 다루었다. 본 연구의 독창성은 지진하중을 적용하였고, 그 응답으로부터 구조물의 미지 변수를 추정한다는 점이다. 본 연구에서 제안한 방법은 지진하중으로부터 손상된 부위를 추정할 뿐 아니라, 그 위치와 정도를 규명할 수 있다. 제안한 방법을 검증하기 위하여 El Centro 및 포항 지진하중을 적용하여 저층 뼈대구조물와 트러스 교량을 대상으로 알고리즘을 실행하였다. 수치해석 예제는 제안한 방법이 수치해석적인 효율성 뿐 아니라 지진으로부터의 심각한 피해를 예방하는 데 적용할 수 있음을 보여주었다.
        4,000원
        8.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the occurrence frequency of earthquake has increased in Korea, and many cultural assets have been damaged. Cheomseongdae is a valuable cultural assets that must be preserved historically and culturally. But, the masonry structure such as Chemseongdae is vulnerable to lateral forces. Therefore, in this study, structural modeling and dynamic analysis are performed to reflect the ground state and structural form of Cheomseongdae. Also, discrete element analysis technique is applied and dynamic behavior characteristics are analyzed according to earthquake load. For this purpose, displacements and stresses according to locations are reviewed and then swelling and distortion are analyzed.
        4,000원
        9.
        2019.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.
        4,000원
        12.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertical earthquake motions can occur along with horizontal earthquakes, so that Structure should be designed to resist Seismic loads in all directions. Especially, due to the dynamic characteristics such as the vibration mode, when the vertical seismic load, the dynamic response of the Spatial structure is large. In this study, the seismic response of the lattice dome to horizontal and vertical seismic loads is analyzed, and a reasonable seismic load combination is analyzed by combining horizontal and vertical seismic response results. In the combination of the horizontal seismic load, the largest result is obtained when the direction of the main axis of the structure coincides with the direction of seismic load. In addition, the combination of vertical seismic load and horizontal seismic load was the largest compared with the combination of horizontal seismic load. Therefore, it is considered that the most reasonable and stable design will be achieved if the seismic load in vertical direction is considered.
        4,000원
        13.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.
        4,200원
        14.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examines earthquake-induced sloshing effects on liquid storage tanks using computation fluid dynamics. To achieve this goal, this study selects an existing square steel tank tested by Seismic Simulation Test Center at Pusan National University as a case study. The model validation was firstly performed through the comparison of shaking table test data and simulated results for the water tank subjected to a harmonic excitation. For a realistic estimation of the wall pressure response of the water tank, three recorded earthquakes with similar peak ground acceleration are applied:1940 El Centro earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Wall pressures monitored during the dynamic analyses are examined and compared for different earthquake motions and monitoring points, using power spectrum density. Finally, the maximum dynamic pressure for three earthquakes is compared with the design pressure calculated from a seismic design code. Results indicated that the maximum pressure from the El Centro earthquake exceeds the design pressure although its peak ground acceleration is less than 0.4 g, which is the design acceleration. On the other hand, the maximum pressure due to two Korean earthquakes does not reach the design pressure. Thus, engineers should not consider only the peak ground acceleration when determining the design pressure of water tanks.
        4,000원
        15.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The improvement in computing systems and sensor technologies devotes to conduct data-driven structural health monitoring algorithms for existing civil infrastructures. Despite of the development of techniques, the uncertainty oriented from the measurement results in the discrepancy to the actual structural parameters and let engineers or decision makers hesitate to adopt such techniques. Many studies have shown that the modal identification results can be affected by the uncertainties due to the applied methods and the types of loading. This paper aims to compare the performance of modal identification methods using Structural Modal Identification Toolsuite (SMIT) which has been developed to facilitate multiple identification methods with a user-friendly designed platform. The data fed into SMIT processes three stages for the comprehensive identification including preprocessing, eigenvalue estimation, and post-processing. The seismic and white noise response for shear frame model was obtained from numerical simulation. The identified modal parameters is compared to the actual modal parameters. In order to improve the quality of coherence in identified modal parameters, several hurdles including modal phase collinearity and extended modal amplitude coherence were introduced. Numerical simulation conducted on the 5 dof shear frame model were used to validate the effectiveness of using these parameters.
        4,000원
        16.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper relates to the study of load characteristics applicable to wind turbine generators induced by earthquakes. An artificial design earthquake wave generated through the target spectrum and the envelope function of Richter Magnitude Scale (ML) 7.0 as in ASCE4-98 was created. A simulation of earthquake loads were performed according to the design load cases (DLC) 9.5~9.7 of GL guidelines. Additionally, simulation of seismic loads experienced by Wind Turbines installed in the Gyeongju region were carried out utilizing artificial earthquakes of ML 5.8 simulating the real earthquakes during the Gyeongju Earthquakes of Sept. 2016.
        4,000원
        17.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Soil-foundation-structure interaction (SFSI) is one of the important issues in the seismic design for evaluating the exact behavior of the system. A seismic design of a structure can be more precise and economical, provided that the effect of SFSI is properly taken into account. In this study, a series of the dynamic centrifuge tests were performed to compare the seismic response of the single degree of freedom(SDOF) structure on the various types of the foundation. The shallow and pile foundations were made up of diverse mass and different conjunctive condition, respectively. The test specimen consisted of dry sand deposit, foundation, and SDOF structure in a centrifuge box. Several types of earthquake motions were sequentially applied to the test specimen from weak to strong intensity of them, which is known as a stage test. Results from the centrifuge tests showed that the seismic responses of the SDOF structure on the shallow foundation and disconnected pile foundation decreased by the foundation rocking. On the other hand, those on the connected pile foundation gradually increased with intensity of input motion. The allowable displacement of the foundation under the strong earthquake, the shallow and the disconnected pile foundation, have an advantage in dissipating the earthquake energy for the seismic design.
        4,000원
        18.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        동조액체감쇠기(TLD)는 에너지 소산장치로써 구조물의 동적응답을 제어하기 위해 개발되었다. TLD는 풍하중에 의한 구조물의 응답을 제어에 매우 효과적임을 보여줬다. 그러나 TLD가 설치된 구조물의 지진응답의 제어에 대해서는 충분한 연구가 이뤄지지 않았다. 이 연구의 목적은 TLD가 설치된 구조물에 여러 동조비와 질량비를 대입하여 지진에 대한 TLD의 성능을 도출하는 것이다. 이러한 목적을 위해, 수치해석 연구가 실시되며, 다른 토양 조건 또한 고려되었다. 그 결과 지진하중에 대한 TLD의 성능은 구조물의 고유주기, 감쇠비에 따라 다르게 나타났다. 또한 TLD의 동조비 다르게 나타남을 알 수 있었다.
        4,000원
        19.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper briefly introduces the design seismic loads in Korea (KBC 2009). Then, over 10,000 recorded earthquake ground accelerograms, with their magnitude ranging from 4.0 to 8.0 and their epicentral distance ranging from 0 to 200 km, were used to examine the appropriateness of seismic load defined in Korea known as a low-to-moderate seismicity region. The following conclusions are drawn based on the results: (1) The effective peak ground accelerations (EPA) of recorded earthquake accelerograms under M ≤ 6.0 and R ≥15 km appear to be less than that of MCE in Korea for all site conditions defined in KBC 2009. (2) The design spectrum (two-thirds of the intensity of MCE) in KBC 2009 is comparable to those of earthquake records in the magnitude 6 - 7 and the epicentral distance less than 50 km. Therefore, (3) the intensity of Korean design earthquake is considered to be overly high since the Korea peninsula is generally conceived to be a low-seismicity region.
        4,000원
        20.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spatial structures as like dome structure have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and effectively control of seismic response of spatial structure subjected to multi-supported excitation. In this study, star dome structure that is subjected to multi-supported excitation was used as an example spatial structure. The response of the star dome structure under multiple support excitation are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. And the application of passive tuned mass damper(TMD) to seismic response control of star dome structures has been investigated. From this numerical analysis, it is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation. And it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure subjected to multi-supported excitation.
        4,000원
        1 2 3 4