검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a two-stage electrostatic precipitator (ESP) was developed using a novel automatic dry cleaning device to reduce the ultrafine particles in subway stations. Collection efficiency was evaluated with a pilot scale ESP (1.2m× 1.2m) and the scale of the test duct was half of the subway air handling unit. The maximum collection efficiency for 0.3 μm particles was 96.9%. In addition, we studied a method of automatic dry cleaning for maintenance of the ESP. The cleaning efficiency was analyzed according to the cleaning flow rate for each particle loading amount to achieve a recovery rate over 90%. In addition, we derived the equation to estimate the reduction in collection efficiency according to the particle loading amount. It was confirmed that the performance of the contaminated ESP was restored to the initial state by the automatic dry cleaning in this study and that the electrical energy consumption was 5 times lower compared to utilizing conventional water cleaning.
        4,200원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As modern society has emerged and developed, the subway has established itself as a representative means of transportation in the city due to its speed, accuracy, and accessibility. According to the Indoor Air Quality Management Act, underground stations have established and managed the maintenance and recommendation standards for PM10, PM2.5, CO2, CO, HCHO, NO2, Rn, VOCs However, th the standards for airborne mold has not been applied for subway stations even though management for the health effect of exposure to mold is necessay. In this study, the correlation with major contributing factors was analyzed by measuring the concentration of airborne molds in the indoor air of underground stations and through literature research. It was confirmed that there was a correlation between the concentration of airborne molds in subway stations and the major contributing factors. As a result of the analysis, it was found that the concentration of airborne molds became higher as the location of the platform became deeper underground, during periods of congestion, and especially in summer. There was no significant correlation with the year of construction. Our findings indicate that appropriate management measures should be devised in response to such contributing factors.
        4,000원
        3.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to assess the pollution level in 13 crowded subway stations in an effort to understand the spatial and seasonal factors of Indoor Air Quality. The main measured items were particulate pollutants such as PM10 and PM2.5 and gaseous pollutants such as CO2, HCHO, Rn, TVOC, BTEX, and Styrene at concourses and platforms in the summer and winter periods. The influence of the draught created by the movement of the train was classified into lateral and island platforms, and the concentrations of PM by location (entrance, middle, and end) were statistically compared and analyzed. As a result, the concentrations of PM were confirmed high in the order of Platform > Concourse > Ambient air. In particular, in the case of platform PM10, the frequency exceeding the standard value (100 μg/m3) was 38.5% and the maximum concentration was 196.2 μg/m3. All gaseous pollutants were at lower levels than the standard, and the factors affecting CO2 and Rn were identified as the number of users and geological characteristics, respectively. The principal component analysis (PCA) demonstrated that PM was found to be a major indicator of the air quality management of subway stations. In particular, the concentrations at entrance and end areas in the lateral platform were about 1.4 times higher with regard to PM10 than in the middle area, and about 1.9 times higher with regard to PM2.5 due to the effect created by the draught produced by the movement of the train. Therefore, in order to manage PM in the platform area, a specialized management plan for places with particularly high PM concentration within the platform area is required. In addition, it is necessary to evaluate the effect created by the draught produced by train movement when selecting locations for measuring indoor air quality.
        4,000원
        4.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the distributions of airborne radon concentration on the platforms of the stations of Seoul Metro by the underground depth of each subway line, and explored the correlation between the radon concentration and the depth and geological conditions around each underground station. The measurements of radon levels were performed in 254 subway stations within Seoul Metro Lines 1 to 8 using the passive sampler (RADUET). Radon concentration data from 2007 to 2017, as well as the depth of each subway station were obtained from the Seoul Metro corporation. The geological information of each subway station were purchased from the Korea Institute of Geoscience and Mineral Resources. Student t-test and correlation analyses were performed to compare the levels of radon by the depth of subway stations, and to investigate the association of radon levels based on geological information. The geometric mean concentration of the all subway stations was 27.9 Bq/m3 ( range, 3 . 7Bq/ m3~124.0 Bq/m3). The depth of Lines 5-8 (geometric mean, –20.3 m) was significantly deeper by about 50% or more than that of Lines 1-4 (–13.1 m) (P<0.01). The radon levels increased significantly in deeper depths and as the number of Lines increased (P<0.05). A significant higher mean concentration of radon above the igneous rock (33.0 Bq/m3) was observed, comparing to that of non-igneous rock (27.5 Bq/m3) (P<0.00001). Our findings indicate that the deeper the subway is built or the more it is constructed on the granite area, the more careful management, including frequent ventilation and measurement monitoring, is necessary.
        4,000원
        5.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To reduce subway passengers’ exposure to PM 10 (particulate matter less than 10 micrometers), management of PM 10 concentration in underground stations is critical. In this study, we attempted to investigate the distribution of airflow PM 10 concentration in an underground station. The numerical simulations were performed using computational fluid dynamics. In order to apply to CFD, measurement of air volume (supplied and exhausted air) and PM 10 concentration were conducted at the concourse and platform areas of the underground station. The results of the simulation agreed with the actual PM 10 concentration, and we confirmed the distribution of PM 10 concentration depending on air volume conditions. This result will be helpful to reduce the PM 10 in an underground station when using ventilation system.
        4,000원
        6.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        공항철도 1단계 개통 전 시운전 중 직통열차가 무정차 정거장인 화물청사역을 통과할때 발생된 열차풍으로 인하여 마감재인 천장판이 마치 파도처럼 출렁이다가 떨어지는 현상이 발생되었다. 이 현상을 처리하기 위해 화물청사역에 풍압 및 풍속에 대한 측정시험을 실시하여 직통열차 무정차 통과로 발생된 열차풍이 건축마감재에 미치는 현상을 조사하고 발생된 열차풍에 대한 지하정거장내 이동 경로를 파악하였다. 또한 홍대입구정거장 축소모형을 제작하여 모형열차를 운행 열차주행실험을 실시하였다. 이 결과를 분석 종합 평가하여 공항철도 2단계 지하역사에 반영하여 쾌적한 지하 환경을 조성하고 앞으로 직통열차가 계획되거나 계획 예정인 지하정거장에 적용하여 직통열차 통과로 발생된 열차풍을 최소화하는 방안을 제시하였다.
        4,000원
        7.
        2011.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Most of the subway stations are located underground and the indoor air quality can be very poor. IAQ tele-monitoring systems (TMS) have been installed at some of subway stations in Seoul to monitor indoor contaminants, such as carbon dioxide, particulate matters and nitrogen oxides. In this paper, we use CO2, PM10, NO2 concentration data collected by TMS in one of the underground stations in Line 4. The correlations are analyzed between the concentrations measured at different locations, such as tunnel, waiting room, and platform to identify the source characteristics. The results indicate there are very weak correlations between CO2-NO2 and PM10-NO2 but strong correlation between CO2-PM10, because both of PM10 and CO2 are related to the number of passengers. The comparison of PM10 concentrations before and after the installation of platform screen door (PSD) indicates that considerable amount of particulate matters are entrained from tunnel into platform area. The PSD exhibits positive effects on indoor air quality especially on particulate concentrations. In case of NO2, there is a strong correlation between indoor and outdoor concentrations. The results presented in this paper can be used to control indoor air quality in subway stations more effectively.
        4,300원
        8.
        2005.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to identify the primary source of radon in Seoul subway stations, and to investigate a relationship between geology and radon. Especially, we expected that the granite areas would have substantially high levels of radon in subway stations. The indoor radon concentrations in subway stations were lognormally distributed. The geometric mean and geometric standard deviation of indoor radon concentration were 48.11 Bq/㎥ and 2.15, respectively. Indoor radon concentrations of eight measuring sites exceeded U.S. EPA criteria (148 Bq/㎥). The geological structure of the subway station regions under this study is characterized by biotite granite, alluvium, banded biotite gneiss and diluvium. Results indicate that bedrock geology can account for a significant portion of the indoor radon in subway stations. Indoor radon concentrations of one subway station were higher than those of other stations. The bed rock in this particular subway station was that of alluvium. We assumed that the unusual increase in measured radon concentration should be related mainly to the existence of the near inferred fault zone (p<0.0001). We selected ten subway stations with homogeneous bedrock type in order to compare radon concentrations of each basement level. There was a significant difference in radon concentration, depending on the basement levels in subway stations (p<0.05).
        4,200원
        9.
        2019.07 KCI 등재 서비스 종료(열람 제한)
        This research investigated the characteristics of CO, CO2, and NO2 concentrations at main subway stations in Busan. The annual mean CO concentrations at the Suyeong and Nampo stations were 0.75 ppm and 0.48 ppm, respectively. Annual CO2 concentration at the Seomyeon 1- platform was 649 ppm. The NO2 concentrations at the Seomyeon 2- waiting room and the Yeonsan station were 0.048 ppm and 0.037 ppm, respectively. CO concentration was highest at two times of the day, and was proportional to the number of passengers commuting to and from work. The CO and CO2 concentrations were highest in winter, but NO2 concentration was highest in spring. CO and CO2 concentrations were highest on Saturday and lowest on Sunday. The correlation of CO and NO2 concentrations measured at the subway stations with those at the ambient air quality station were highest at the Seomyeon 1 and 2- waiting room and Jeonpodong. The correlation was lowest at the Yeonsan and Yeonsandong station. The number of days when CO2 concentration exceeded 700 ppm over the last three years at the Seomyeon 1- platform was 174. The findings of this research are expected to deepen understanding of the fine particle characteristics at subway stations in Busan and be useful for developing a strategy for controlling urban indoor air quality.
        10.
        2019.07 KCI 등재 서비스 종료(열람 제한)
        This research investigated the characteristics of PM10 and PM2.5 concentrations at the main subway stations in Busan. Annual mean PM10 concentrations at the Seomyeon 1- waiting room and platform were 51.3 ㎍/㎥ and 47.5 ㎍/㎥ , respectively, and the annual PM2.5 concentration at the Seomyeon 1- platform was 28.8 ㎍/㎥ . PM2.5/PM10 ratio at Seomyeon 1-platform and Dongnae station were 0.58 and 0.53, respectively. Diurnal variation of PM10 concentration at subway stations in Busan was categorized into four types, depending on the number of peaks and the times at which the peaks occurred. Unlike the areas outside of the subway stations which reported maximum PM10 concentration mostly in spring across the entire locations, the interiors of the subway stations reported the maximum PM10 concentration in spring, winter, and even summer, depending on their location. PM10 concentration was highest on Saturday and lowest on Sunday. The numbers of days when PM10 concentration exceeded 100 ㎍/㎥ and 80 ㎍/㎥ per day over the last three years at the subway stations in Busan were 36 and 239, respectively. The findings of this research are expected to enhace the understanding of the fine particle characteristics at subway stations in Busan and be useful for developing a strategy for controlling urban indoor air quality.
        11.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.
        12.
        2011.05 KCI 등재 서비스 종료(열람 제한)
        지하역사의 대부분은 지진에 대비한 내진설계가 거의 수행되지 않음으로 인하여 일정규모 이상의 지진이 발생할 경우 대규모 인명 및 재산피해가 우려된다. 지중구조물인 지하역사의 신뢰도 높은 내진성능 평가를 위하여 지진하중 재하 시 지반과 구조물의 상호작용이 고려된 거동의 고찰과 검증이 요구된다. 이에 본 연구에서는 수도권 소재의 실제 지하역사에 대하여, 상사비 1/60 스케일의 축소모형 지하역사 구조물 시험체에 장주기인 Kobe지진파와 단주기인 Northridge지진파를 적용한 원심모형 진동대 시험을 수행하였다, 원심모형시험결과와 응답변위법, 동일단면에 대해 SHAKE91에 의한 지반 및 구조물의 상대변위, 구조물의 모멘트에 대하여 비교․분석함으로써 지하역사의 내진성능을 평가하고자 하였다.