검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 66

        1.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The public relations room of the waste disposal facility is a space that can be visited by a large number of unevaluated personnel. Therefore, it is essential to design against fire, and research on fire and evacuation is essential. In this study, in order to evaluate the safety of the occupants in the event of fire and evacuation based on the life safety standards of occupants, the increase in risk due to heat, visible distance, and toxic gases on a plane 1.8m from the floor, which is the limit of breathing of the evacuee, over time. It was analyzed by location. As a result, the RSET of the P-01 exit was 93.0 seconds and the ASET was 272.6 seconds, the RSET of the P-02 exit was 45.8 seconds, the ASET was 147.7 seconds, the RSET of the P-03 exit was 106 seconds, and the ASET was 182.9 seconds.
        4,000원
        3.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원자로의 해체 과정에서 발생되는 방사성 폐기물 내 존재하는 55Fe, 63Ni은 폐기물의 처리방법을 결정하는 데 있어 기초적인 지표로 활용되는 중요한 핵종이다. 하지만 두 핵종은 낮은 방사선량으로 인해 다른 핵종들과의 분리가 필수적이며 또한 시 료 매질에서 완전히 추출할 수 있는 전처리가 선행되어야 한다. 따라서 본 연구는 다양한 매질의 원자로 해체 폐기물에 대한 전처리방법의 적용성을 평가하기 위해 NIST SRM 5종 (1646a, 1944, 8704, 2709a, 1633c)에 대하여 왕수, 불산, 과염소산을 각각 이용하는 습식산화법과 alkali-fusion 전처리법에 따른 Iron와 Nickel의 회수율을 비교하였다. 실험 결과 alkali-fusion 방법은 다양한 매질의 인증표준물질에 대해 Iron 95.3~98.3%, Nickle 86.6~88.1%의 분석 정확도와 2% 이하의 정밀도를 나타냄으로서 해체폐기물 중 55Fe, 63Ni 분석에 가장 최적화된 전처리법으로 판단된다.
        4,000원
        13.
        2008.02 구독 인증기관 무료, 개인회원 유료
        The average BOD concentration was found to be about 269mg/L before a process innovation, but after the innovation, it became 30mg/L, which satisfied the effluent standard of 120mg/L. The removal effluent standard of 120mg/L. The removal efficiency was about 60~80%, and the concentration of the treated water was found th be low. after the process innovation, the average COD concentration was 29mg/L, and the CODmn removal efficiency became low to the level of about 65~76%, which was found lower than the effluent standard of 130mg/L. After the process innovation the SS average concentration of the treated water was 13mg/L, which was lower than that before the innovation (32mg/L). By the activated sludge process innovation, the SS removal efficiency was improved to be 30~70%. The average concentration of total coliform before the process innovation was 6100 count/mL because an Activated sludge process only occasionally pass over the allowed standard(The average number of the total coliform of Activated sludge process treated water was about 8100 count/mL), UV disinfection process was introduced. after the introduction, the average number of the total coliform was 1800 count/mL, which satisfied the allowed effluent standard of 3000 count/mL.
        4,300원
        20.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.
        1 2 3 4