검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,196

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 실험에서는 Ti를 기반으로 한 평판 수소 분리막을 설계하여 제조하였다. 새로운 조성의 Ti를 베이스로 한 수소 분 리막을 찾기 위하여 여러 합금들의 물리화학적 특성과 수소투과도 사이의 상관관계에 대해 조사하였다. 이를 바탕으로 신조성의 합금막 2종(Ti14.2Zr66.4Ni12.6Cu6.8 (70 μm), Ti17.3Zr62.7Ni20 (80 μm))을 설계 및 제조하였다. 제조된 평판 수소 분리막은 300~500°C, 1~4 bar의 조건에서 혼합 가스(H2, N2), sweep 가스(Ar)를 이용하여 수소 투과 실험을 진행하였다. Ti14.2Zr66.4Ni12.6Cu6.8 합금 막은 500°C, 4bar에서 최대 16.35 mL/cm2min의 flux를 가지며, Ti17.3Zr62.7Ni20 합금막은 450°C, 4 bar에서 최대 10.28 mL/ cm2min의 flux를 가진다.
        4,000원
        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        에너지 패러다임의 변화가 요구되는 현대에 수소는 매력적인 에너지원이다. 이러한 수소를 정제하는 기술 중에서 분리막을 이용한 기술은 저비용으로 고순도의 수소를 정제할 수 있는 기술로 주목받고 있다. 그러나 수소 분리 성능이 뛰어 난 팔라듐(Pd)은 가격이 매우 비싸 이를 대체한 소재가 필요하다. 본 연구에서는 수소 투과 성능은 좋으나 수소 취성에 약한 니오븀(Nb)과 수소 투과 성능은 떨어지나 내구성이 뛰어난 니켈(Ni)과 지르코늄(Zr)을 혼합한 합금으로 분리막을 제조하여 1~4 bar, 350~450 °C 조건에서 수소 투과 특성을 확인하였다. Pd를 코팅하지 않은 Ni48Nb32Zr20 분리막의 경우 최대 0.69 ml/cm2/min의 투과량을 보였으며, Pd가 코팅된 경우에는 최대 13.05 ml/cm2/min의 투과량을 보였다.
        4,000원
        3.
        2024.04 구독 인증기관·개인회원 무료
        본 논문은 초탄성 형상기억합금의 복원성능에 의해 지속적으로 사용이 가능하고 마찰볼트 적용으로 에너지 소산 능력이 우수한 에너지 소산형 댐퍼를 제안하고 성능의 우수성을 입증하기 위해 구조용 탄소강이 적용된 댐퍼와 함께 해석을 통한 결과 비교 분석을 진행하였다. 해석결과에 대해 최대하중, 잔류변위, 에너지 소산등의 분석을 진행하여 초탄성 형상기억합금이 적용된 댐퍼의 우수성을 입증하였 으며, 해석 결과로 초탄성 형상기억합금이 적용됨에 따라 하중 성능과 잔류변위의 회복성능이 상당히 개선됨을 확인하였다. 최대하중의 경우 SSF댐퍼가 382.60kN으로 가장 우수하였으며 잔류변위의 경우 마찰볼트가 적용되지 않은 SS10, SS15가 0mm로 가장 우수한 회복거동을 보였다. 에너지소산의 경우 마찰볼트와 재료의 항복에 의한 연성효과가 우수한 CSF15가 가장 우수한 성능에 대한 거동 특성을 파악한다.
        4.
        2024.04 구독 인증기관·개인회원 무료
        건축물은 사용자의 부주의, 전기적, 기계적 요인 등에 의해 화재가 발생할 수 있고, 화재 발생 시 각 재료의 특성에 따라 강성 및 강도가 감소하여 구조 성능이 저하될 수 있다. 이러한 상황에서 적절 한 성능 복구가 되지 않으면 후에 지진 등의 큰 하중이 가해질 때 건축물 붕괴 등 치명적인 피해가 발생할 수 있다. 현재 내화성능을 높이는 방법으로 내화피복을 사용하는 등 수동적인 방법에 머물러 있으며, 꾸준한 유지관리 등이 필요하다는 단점이 있다. 따라서 변형 후 열을 가하면 원래의 형상으로 돌아가는 성질을 가진 형상기억합금을 사용하여 콘크리트 보를 보강하고, 화재 시, 화재 후에 프리스 트레스트 콘크리트와 유사한 방식으로 콘크리트에 압축응력을 발생시켜 구조 성능을 향상시킬 수 있 는지 ANSYS 구조해석 프로그램을 통해 그 효과를 확인해보고자 한다.
        5.
        2024.04 구독 인증기관·개인회원 무료
        본 연구에서는 용접 여부에 따른 세 가지 유형의 철계-형상기억합금(Fe-Shape Memory Alloys, Fe-SMA)의 고주기 피로 거동에 대한 실험적 연구를 수행하였다. 본 연구를 위해 사용된 Fe-SMA은 스위스 EMPA에서 개발된 Fe-SMA으로, Fe-17Mn-5Si-10Cr-4Ni-1(V,C)의 화학적 조성을 가진다. 용접 여부 및 열처리 여부를 변수로 한 비용접, 용접, 열처리된 용접 시편이 ASTM E606/E606M 표 준에 따라 제작되었다. Fe-SMA의 재료적 특성을 평가하기 위해 직접 인장 실험 및 회복 실험이 수 행되었으며, 용접된 Fe-SMA의 피로 거동 평가를 위해 응력 진폭에 따른 피로 시험이 수행되었다. 피 로 시험은 최대 응력 수준을 Fe-SMA 극한 인장강도의 약 70%인 700MPa에서부터 100MPa씩 감소 시키며, 200MPa의 응력 범위까지 수행되었으며, 응력비(R)는 0으로 설정되었다. 피로 한계는 ASTM E1823-13에 따라 하중 반복 횟수 200만 회를 기준으로 하여 각 시편의 피로 한계를 확인하였다.
        6.
        2024.04 구독 인증기관·개인회원 무료
        형상기억합금(Shape Memory Alloy, SMA)은 소성변형이 일어나도 냉각 및 가열을 통해 기존 형상 으로 돌아갈 수 있는 형상기억효과(Shape Memory Effect, SME)를 가진 재료이다. 이를 통해 사전에 인장 변형된 SMA를 구속 후 가열하면 SME에 의해 원래 형태로 돌아가려 하지만, 변형이 구속되어 회복 응력이라 하는 압축 응력이 발생한다. 따라서 사전 변형된 SMA를 구조물에 적용하게 되면 셀프 -프리스트레싱을 도입할 수 있다. 그중 철을 기반으로 제작된 Fe-SMA는 다른 SMA에 비해 높은 경 제성을 가져 건설 재료로써 많은 관심을 받고 있다. 이에 Fe-SMA를 철근콘크리트(Reinforced Concrete, RC) 구조물에 적용한 많은 연구가 진행되었으며, 구조성능이 향상되는 것을 확인하였다. 그러나 Fe-SMA가 사용된 RC 구조물의 피로 실험에 관한 연구는 부족한 실정이다. 따라서 본 연구에서는 Fe-SMA 바를 인장재로 사용한 RC 보의 피로 성능을 평가하였고 하중 유형(정적, 피로)과 피로 응력 범위를 변수로 고려해 고주기 피로 실험을 수행하였다. 이를 통해 피로 강도, 피로 수명 및 거동을 확 인하였으며, Fe-SMA 바를 인장재로 사용한 RC 보의 피로강도는 최대하중의 40%~60% 사이에 있을 것으로 예측되었다.
        7.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the demand for shape memory alloys in the biomedical industry is increasing. Nitinol alloy, which accounts for most of the shape memory alloy market, occupies most of the biomedical field. Nitinol for biomaterials requires a clean surface without sub-micron surface integrity and surface defects in order to be used more safely in a living body. Among them, new technologies such as polishing using MR fluid are being studied, but there is a disadvantage in that it takes a long time for processing due to a low material removal rate. In this study, material removal studies were conducted for effective polishing, and excellent polishing properties of MR fluid were confirmed.
        4,000원
        8.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
        4,000원
        9.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aerospace and power generation industries have an increasing demand for high-temperature, highstrength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.
        4,000원
        10.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The current study investigates the seismic performance of shear-dominant RC columns retrofitted with iron-based shape memory alloy (Fe SMA). Three RC columns with insufficient transverse reinforcement were designed and fabricated for lateral cyclic loading tests. Before testing, two specimens were externally confined with carbon fiber-reinforced polymer (CFRP) sheets and self-prestressed Fe SMA strips. The test results showed that both CFRP and Fe SMA performed well in preventing severe shear failure exhibited by the unretrofitted control specimen. Furthermore, the two retrofitted specimens showed ductile flexural responses up to the drift ratios of ±8%. In terms of damage control, however, the Fe SMA confinement was superior to CFRP confinement in that the spalling of concrete was much less and that the rupture of confinement did not occur.
        4,000원
        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        12.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Research into lightweighting to improve vehicle fuel efficiency and reduce exhaust emissions continues as environmental regulations become increasingly stringent. Magnesium alloys, chosen for their lightweight properties, are more than 35% lighter than aluminum alloys and also exhibit excellent mechanical characteristics. While magnesium alloys are commonly utilized in arc welding processes like GTAW and GMAW, they pose challenges such as high residual stresses and welding defects. Laser welding, on the other hand, offers the advantage of precise heat input, enabling deep and high-quality welds while minimizing welding distortion. In this study, fiber laser welding was employed to weld a 4.0mm thick AZ31B-H24 using the Bead on Plate technique. A total of 10 different welding conditions were tested with fiber laser welding, and the cross-sections of the weld beads were examined. Weld bead shapes were measured based on five parameters. The results allowed for an evaluation of the weldability of AZ31B-H24 using fiber laser welding.
        4,000원
        13.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.
        4,000원
        14.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent hightemperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the hightemperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the hightemperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.
        4,000원
        15.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of annealing on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500oC causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 μm and from 2.9 to 6.3 μm, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.
        4,000원
        16.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys, known for their high strength-to-weight ratios and impressive electrical and thermal conductivities, are extensively used in numerous engineering sectors, such as aerospace, automotive, and construction. Recently, significant efforts have been made to develop novel aluminum alloys specifically tailored for additive manufacturing. These new alloys aim to provide an optimal balance between mechanical properties and thermal/ electrical conductivities. In this study, nine combinatorial samples with various alloy compositions were fabricated using direct energy deposition (DED) additive manufacturing by adjusting the feeding speeds of Al6061 alloy and Al-12Si alloy powders. The effects of the alloying elements on the microstructure, electrical conductivity, and hardness were investigated. Generally, as the Si and Cu contents decreased, electrical conductivity increased and hardness decreased, exhibiting trade-off characteristics. However, electrical conductivity and hardness showed an optimal combination when the Si content was adjusted to below 4.5 wt%, which can sufficiently suppress the grain boundary segregation of the α- Si precipitates, and the Cu content was controlled to induce the formation of Al2Cu precipitates.
        4,000원
        17.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study reports an experimental and analytical exploration of concrete columns laterally confined with Fe-based shape-memory alloy (Fe-SMA) spirals. For performing experiments, Fe-SMA rebars with a 4% prestrain and diameter of 10 mm were fabricated and concrete columns with internal Fe-SMA spiral reinforcement were constructed with a diameter of 200 mm and height of 600 mm. An acrylic bar with an attached strain gauge was embedded in the center of the specimen to measure local strains. Experimental variables encompassed the Fe-SMA spiral reinforcement, spacing, and activation temperature. Uniaxial compression tests were conducted after applying active confinement to the concrete columns through electrical-resistance heating. Notably, as the Fe-SMA spiral spacing decreased, the local failure zone length and compressive fracture energy of the prepared specimens increased. Additionally, a model incorporating compressive fracture energy was proposed to predict the stress–strain behavior of the. This model, accounting for active and passive confinement effects, demonstrated accurate predictions for the experimental results of this study as well as for previously reported results.
        4,000원
        18.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.
        4,000원
        20.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tendon-driven mechanisms have gained prominence in a range of applications, including soft robots, exoskeletons, and prosthetic devices. These mechanism use flexible tendons or cables to transmit force and control joint movement. As the popularity of these mechanisms grows, there is an increasing demand for solutions to enhance stability and safety. The use of brakes is a well-known solution, but existing models are difficult to customize for small soft robots. In this paper, we present a one-way shape memory alloy-based compact brake for tendon-driven mechanisms. The proposed soft brake featured a thin design and was tailored for seamless integration within a tendon-driven mechanism. In addition, the use of the one-way shape memory alloys enabled the design of the brakes that are both compact and powerful. This brake is expected to be widely used in miniaturized tendon-driven robots.
        4,000원
        1 2 3 4 5