검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 94

        61.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 승용차에서 사람들이 기기를 사용하기 위해 사용하는 기동어인 “Hi, KIA!”의 감성을 기계학습을 기반으로 분류가 가능한가에 대해 탐색하였다. 감성 분류를 위해 신남, 화남, 절망, 보통 총 4가지 감정별로 3가지 시나리오를 작성하여, 자동차 운전 상황에서 발생할 수 있는 12가지의 사용자 감정 시나리오를 제작하였다. 시각화 자료를 기반으로 총 9명의 대학생을 대상으로 녹음을 진행하였다. 수집된 녹음 파일의 전체 문장에서 기동어 부분만 별도로 추출하는 과정을 거쳐, 전체 문장 파일, 기동어 파일 총 두 개의 데이터 세트로 정리되었다. 음성 분석에서는 음향 특성을 추출하고 추출된 데이터를 svmRadial 방법을 이용하여 기계 학습 기반의 알고리즘을 제작해, 제작된 알고리즘의 감정 예측 정확성 및 가능성을 파악하였다. 9명의 참여자와 4개의 감정 카테고리를 통틀어 기동어의 정확성(60.19%: 22~81%)과 전체 문장의 정확성(41.51%)을 비교했다. 또한, 참여자 개별로 정확도와 민감도를 확인하였을 때, 성능을 보임을 확인하였으며, 각 사용자 별 기계 학습을 위해 선정된 피쳐들이 유사함을 확인하였다. 본 연구는 기동어만으로도 사용자의 감정 추출과 보이스 인터페이스 개발 시 기동어 감정 파악 기술이 잠재적으로 적용 가능한데 대한 실험적 증거를 제공할 수 있을 것으로 기대한다.
        4,600원
        62.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.
        4,200원
        64.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 인공지능의 기계학습 또는 심층학습을 이용한 연구가 다양한 분야에서 시도되고 있다. 본 연구는 공공 시력데이터를 자동화 수집하고, 수집한 데이터를 기계학습에 적용 및 예측하였다. 다양한 학습모델간 성능을 비교 함으로써, 시과학분야에서 적용 가능한 기계학습 최적화모델을 제시함에 있다. 방법 : 국민건강보험(NHISS) 및 통계포털(KOSIS)에 발표된 국민 시력분포 현황관련 자료를 특정 색인을 포함하 는 자료검색기법인 크롤링(crawling)을 사용하여 검색 및 수집을 자동화하였다. 2011년부터 2018년까지 보고된 모든 자료를 수집하였으며, 데이터 학습을 위해 Linear Regression, LASSO, Ridge, Elastic Net, Huber Regression, LASSO/LARS, Passive Aggressive Regressor 그리고 Pansacregressor 총 8개 모델을 사용하여 각각 데이터 학습 하였다. 결과 : 수집한 데이터를 기반으로 기계학습 모델을 통해 2018년을 예측하였다. 각 모델간 2018년도 실제-예측데 이터 차이를 MAE(Mean Absolute Error)와 RMSE(Root Mean Square Error) 점수로 각각 나타냈다. 학습모델 별 차이 중 MAE 평가결과 모델간 우/좌 Linear Regression(0.22/0.22), LASSO(0.83/0.81), RIDGE(0.31/0.31), Elastic Net(0.86/0.84), Huber Regression(0.14/0.07), LASSO/LARS(0.15/0.14), Passive Aggressive Regressor (0.29/0.18) 그리고 RANSA Regressor(0.22/0.22)를 보였다. RMSE에서 Linear Regression(0.40/0.40), LASSO (1.08/1.06), Ridge(0.54/0.54), Elastic Net(1.19/1.17), Huber Regression(0.20/0.20), LASSO/LARS(0.24/0.23), Passive Aggressive Regressor(0.21/0.58) 그리고 RANSA Regressor(0.40/0.40) 각각 나타냈다. 결론 : 본 연구는 자동화 자료검색 및 수집을 위한 크롤링 기법을 이용하여 데이터를 수집하였다. 이를 기반으 로 고전 선형모델을 기계학습에 적용할 수 있도록 하고, 데이터 학습을 위한 8개 학습모델들 간 성능을 비교하였다.
        4,000원
        66.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        개(Canis lupus familiaris)는 인간의 소외 현상을 개선하고, 공동체 생활 의식 향상에 기여하는 반려동물이다. 반려견 품종을 명확히 관리하는 것은 유전병을 감소시키거나, 형질 개량, 종 다양성 유지 등을 위해 중요하다. 본 연구에서는 고밀도 SNP 칩 유전자형 데이터와 기계학습 기술을 이용하여, 유전자형 데이터에 기반한 품종 식별이 가능한지, 가능하다면 최소 몇 개의 유전마커로 품종 식별을 유의하게 수행할 수 있는지 확인하기 위하여, 반려견 11 품종 226두의 23K SNP 칩 데이터를 분석하였다. 9종의 기계학습 다중범주 분류 알고리즘과 2종의 특징 선택 방법의 성능을 비교하여, 선형 서포트 벡터 머신 분류기와 주성분 분석 특징 기여도를 이용한 특징 선택 방법을 이용했을 때, 11종의 반려견 품종을 90% 이상 정확도로 식별하였으며, 이 때 40개의 유전마커가 필요함을 확인하였다. 최종 선발 된 40개의 반려견 품종 식별 유전마커는 타 질병 예측 마커와 결합하여 유전자 검사 키트로 제작될 수 있으며, 반려견 품종 관리 및 질병 관리 기술로 유용하게 활용될 수 있을 것이다.
        4,000원
        71.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 모아레 현상을 이용하여 구조물의 평면부재의 변형을 탐지하는 방식을 개발하였다. 평행선형상인 기존연구와 비교하여 본 연구의 원형형상은 변형 시 고유한 무늬가 나타나 변형의 방향도 시각적으로 인지할 수 있었다. 또한 변형을 확실하고 자동 으로 구분할 수 있도록 기계학습의 이미지분류를 사용하여 탐지한 결과 이미지 표면이 오염되더라도 KNN, SVM방식으로는 95%의 인식률, AlexNet과 Gogglenet Inception으로는 99%의 인식률을 보여 실현장활용이 가능할 것으로 판단된다.
        4,000원
        72.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        요약; 최근에는 기계 학습, 특히 심층 학습에 많은 연구가 진행되고 있다. 구글, 페이스 북과 같은 대기업이 인공 지능과 기계 학습에 관심을 가지고 있기 때문에, 이러한 연구는 날마다 발전하고있다. 기계 학습은 의학, 번역 및 IT와 같은 다양한 산업에서 사용될 것으로 기대됩니다. 게임 부문은 기계학습 기술적용의 효과가 예상되는 영역 중 하나라고 간주됩니다. 본 논문에서는 MMORPG-Tera의 게임 콘텐츠에서 몬스터의 승패를 예측하는 신경망을 Tensorflow를 통해 설계하였다. 이 모델은 1 개의 입력 레이어, 2 개의 숨겨진 레이어 및 1 개의 출력 레이어를 가지고 있다. 입력 레이어에는 8 개의 노드가 있고 각 숨겨진 레이어에는 16 개의 노드가 있으며 출력 레이어에는 1 개의 노드가 있다. 더 나은 결과를 위해 우리는 그라디언트 디센트, 시그 모이드 (Sigmoid) 함수 및 Relu 함수 (Activate 함수)에 Adam을 사용한다. 준비된 데이터 세트의 마지막 부분은 테스 트 데이터 용으로 사용되고 나머지는 학습 모델 용으로 사용되었다. 이 모델은 5 ~ 10 % 오차 이내의 확률을 예측할 수 있다. 데이터 세트의 부족은 만족스럽지 않은 점으로 남아 있으며, 충분한 데이터가 수집되고 더 개선 된 모델이 준비되면 오류를 더 줄일 수 있다. 그리고 제안된 모델은 앞으로 다른 게임이나 스포츠 게임에도 적용될 것이다.
        4,000원
        74.
        2017.04 구독 인증기관·개인회원 무료
        기계에 대한 새로운 학습 방법의 등장과 함께 기계학습을 이용한 영상 인식에 대한 관심이 높다. 스마트 기기를 이용한 영상 획득이 활발해지면서, 촬영한 영상 속 생물 개체의 이름을 자동으로 알려 주는 기계학습 기반의 영상인식 기술은 대중적인 호기심을 충족시킬 뿐 아니라 생물학 및 영상인식 연구자들에게도 매력적인 주제이다. 본 발표에서는 15종의 나비 영상으로부터 나비의 형태(shape) 및 색깔과 같은 영상정보를 개체 인식에 이용하는 기계학습 기반의 나비인식 방법을 소개 한다. 우선 나비의 형태나 색깔로부터 각 종을 대표해 기계의 학습 데이터로 사용될 특징(feature) 추출을 위한 몇 가지 방법들에 대해 알아본다. 그리고 추출된 특징들을 학습 데이터로 이용해 세 가지 대표적인 기계학습 방법(베이지안 분류기, 인공신경망, 서포트 벡터 머신)을 학습시키는 방법 및 테스트 데이터를 이용한 성능평가 방법을 소개한다.
        75.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:This study suggests a specific methodology for the prediction of road surface temperature using vehicular ambient temperature sensors. In addition, four kind of models is developed based on machine learning algorithms.METHODS:Thermal Mapping System is employed to collect road surface and vehicular ambient temperature data on the defined survey route in 2015 and 2016 year, respectively. For modelling, all types of collected temperature data should be classified into response and predictor before applying a machine learning tool such as MATLAB. In this study, collected road surface temperature are considered as response while vehicular ambient temperatures defied as predictor. Through data learning using machine learning tool, models were developed and finally compared predicted and actual temperature based on average absolute error.RESULTS:According to comparison results, model enables to estimate actual road surface temperature variation pattern along the roads very well. Model III is slightly better than the rest of models in terms of estimation performance.CONCLUSIONS :When correlation between response and predictor is high, when plenty of historical data exists, and when a lot of predictors are available, estimation performance of would be much better.
        4,000원
        77.
        2016.05 구독 인증기관·개인회원 무료
        역삼투 해수담수화 공정에서 막 오염은 생산수량 감소 및 공정의 에너지 소비량 증가를 야기한다. 막간 차압 증가, 생산수량 감소 외에 막 저항 값의 증가는 막 오염 정도를 판단하는 수치로 사용이 가능하다. 특히 막 저항 값 기반의 세정은 막 오염 제어를 통해 역삼투 해수담수화 공정에서 막의 성능 유지 시 사용 가능하다. 이에 본 연구에서는 해수 수질 인자 및 공정 운전 인자에 기반하여 막 저항 값을 예측하는 알고리즘을 제안한다. 알고리즘은 해수담수화 플랜트의 운전 데이터에 기반하여 인자들과 막 저항 값 사이의 관계를 학습하고 검증과정을 거쳐 막 오염 발생 시점을 사전에 예측하는 방식으로 개발되었다. 예측 정확도를 분석하고 개발된 알고리즘의 수정을 통해 예측 정확도 향상을 위한 연구를 진행하였다.
        79.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, scheduling problems with position-dependent processing times have received considerable attention in the literature, where the processing times of jobs are dependent on the processing sequences. However, they did not consider cases in which each processed job has different learning or aging ratios. This means that the actual processing time for a job can be determined not only by the processing sequence, but also by the learning/aging ratio, which can reflect the degree of processing difficulties in subsequent jobs. Motivated by these remarks, in this paper, we consider a two-agent single-machine scheduling problem with linear job-dependent position-based learning effects, where two agents compete to use a common single machine and each job has a different learning ratio. Specifically, we take into account two different objective functions for two agents: one agent minimizes the total weighted completion time, and the other restricts the makespan to less than an upper bound. After formally defining the problem by developing a mixed integer non-linear programming formulation, we devise a branch-and-bound (B&B) algorithm to give optimal solutions by developing four dominance properties based on a pairwise interchange comparison and four properties regarding the feasibility of a considered sequence. We suggest a lower bound to speed up the search procedure in the B&B algorithm by fathoming any non-prominent nodes. As this problem is at least NP-hard, we suggest efficient genetic algorithms using different methods to generate the initial population and two crossover operations. Computational results show that the proposed algorithms are efficient to obtain near-optimal solutions.
        4,300원
        80.
        2006.12 구독 인증기관 무료, 개인회원 유료
        본 논문은 기계 학습 기법 중에서 메모리 기반 학습을 사용하여 범용의 학습 가능한 한국어 문장 경계 인식기를 제안한다. 제안한 방법은 메모리 기반 학습 알고리즘 중 최 근린 이웃(kNN) 알고리즘을 사용하였으며, 이웃들을 이용한 문장 경계 결정을 위한 스 코어 값 계산을 위한 다양한 가중치 방법을 적용하여 이들을 비교 분석하였다. 문장 경 계 구분을 위한 자질로는 특정 언어나 장르에 제한적이지 않고 범용으로 적용될 수 있 는 자질만을 사용하였다. 성능 실험을 위하여 ETRI 코퍼스와 KAIST 코퍼스를 사용하 였으며, 성능 척도로는 정확도와 재현율이 사용되었다. 실험 결과 제안한 방법은 적은 학습 코퍼스만으로도 98.82%의 문장 정확률과 99.09%의 문장 재현율을 보였다.
        4,300원
        1 2 3 4 5