검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 698

        82.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 비평형 분자동역학 시뮬레이션 기법을 사용하여 알루미늄 박막과 실리콘 웨이퍼 간 열경계저항을 예측하였다. 실리콘의 끝 단 고온부에 열을 공급하고, 같은 양의 열을 알루미늄 끝 단 저온부에서 제거하여 경계면을 통한 열전달이 일어나도록 하였으며, 실리콘 내부와 알루미늄 내부의 선형 온도 변화를 계산함으로써 경계면에서의 온도 차이에 따른 열저항 값을 구하였다. 300K 온도에서 5.13±0.17m2·K/GW의 결과를 얻었으며, 이는 열유속 조건의 변화와 무관함을 확인하였다. 아울러, 펨토초 레이저 기반의 시간영역 열반사율 기법을 사용하여 열경계저항 값을 실험적으로 구하였으며, 시뮬레이션 결과와 비교·검증하였다. 전자빔 증착기를 사용하여 90nm 두께의 알루미늄 박막을 실리콘(100) 웨이퍼 표면에 증착하였으며, 유한차분법을 이용한 수치해석을 통해 열전도 방정식의 해를 구해 실험결과와 곡선맞춤 함으로써 열경계저항을 정량적으로 평가하고 나노스케일에서의 열전달 현상에 관한 특징을 살펴보았다.
        4,000원
        85.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide (Cu2O) thin film, namely a ZnO/Cu2O oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type Cu2O thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of Cu2O layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this ZnO/Cu2O p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs Hg/Hg2Cl2, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the pn bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.
        4,000원
        86.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tungsten trioxide (WO3) is a promising candidate as a photocatalyst because of its outstanding electrical and optical properties. In this study, we prepare WO3 thin films by electrodeposition and characterize the photocatalytic degradation of methylene blue using these films. Depending on the voltage conditions (static and pulse), compact and porous WO3 films are fabricated on a transparent ITO/glass substrate. The morphology and crystal structure of electrodeposited WO3 thin films are investigated by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. An application of static voltage during electrodeposition yields a compact layer of WO3, whereas a highly porous morphology with nanoflakes is produced by a pulse voltage process. Compared to the compact film, the porous WO3 thin film shows better photocatalytic activities. Furthermore, a much higher reaction rate of degradation of methylene blue can be achieved after post-annealing of WO3 thin films.
        4,000원
        87.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 강유전성 고분자를 이용하여 제작된 100 nm 이하 두께를 가지는 박막형 커페시터의 측정 주파수에 따른 분극 반전 특성을 측정, 분석하였다. 고정된 박막 두께에 대해, 인가되는 최고 전기장의 세기가 증가할수록 더 높은 항전계에서 분극 반전이 발생되었다. 고정된 최고 전기장에 대해, 박막의 두께에 무관하게 같은 항전계에서 분극 반전이 발생되었다. 모든 측정에서 로그스케일 전기장 및 로그스케일 주파수의 관계에서 약 0.12 ± 0.01의 비례 상수를 보였다. 결과적으로, 강유전체 고분자 커페시터가 40 nm 두께까지는 size effect 없이 일정한 분극 반전 특성을 보였다. 본 연구는 저전압 동작 고분자 메모리 소자의 동작 예측에 유용할 것이므로 저전압에서 동작 가능한 고분자 메모리 소자의 가능성을 보여준다.
        4,000원
        88.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The transfer characteristics of zinc tin oxide(ZTO) on silicon dioxide(SiO2) thin film transistor generally depend on the electrical properties of gate insulators. SiO2 thin films are prepared with argon gas flow rates of 25 sccm and 30 sccm. The rate of ionization of SiO2(25 sccm) decreases more than that of SiO2(30 sccm), and then the generation of electrons decreases and the conductivity of SiO2(25 sccm) is low. Relatively, the conductivity of SiO2(30 sccm) increases because of the high rate of ionization of argon gases. Therefore, the insulating performance of SiO2(25 sccm) is superior to that of SiO2(30 sccm) because of the high potential barrier of SiO2(25 sccm). The ZTO/SiO2 transistors are prepared to research the CO2 gas sensitivity. The stability of the transistor of ZTO/SiO2(25 sccm) as a high insulator is superior owing to the high potential barrier. It is confirmed that the electrical properties of the insulator in transistor devices is an important factor to detect gases.
        4,000원
        89.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based processes, e.g., co-evaporation and sputtering, are well established to obtain high-efficiency CIGS and/or CZTS thin film solar cells with over 20% of power conversion. However, because the vacuum-based processes need high cost equipment, they pose technological barriers to producing low-cost and large area photovoltaic cells. Recently, non-vacuum based processes, for example the solution/nanoparticle precursor process, the electrodeposition method, or the polymer-capped precursors process, have been intensively studied to reduce capital expenditure. Lately, over 17% of energy conversion efficiency has been reported by solution precursors methods in CIGS solar cells. This article reviews the status of non-vacuum techniques that are used to fabricate CIGS and CZTS thin films solar cells.
        4,000원
        91.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates the microstructural properties of CoCrFeMnNi high entropy alloy (HEA) oxynitride thin film. The HEA oxynitride thin film is grown by the magnetron sputtering method using nitrogen and oxygen gases. The grown CoCrFeMnNi HEA film shows a microstructure with nanocrystalline regions of 5~20 nm in the amorphous region, which is confirmed by high-resolution transmission electron microscopy (HR-TEM). From the TEM electron diffraction pattern analysis crystal structure is determined to be a face centered cubic (FCC) structure with a lattice constant of 0.491 nm, which is larger than that of CoCrFeMnNi HEA. The HEA oxynitride film shows a single phase in which constituting elements are distributed homogeneously as confirmed by element mapping using a Cs-corrected scanning TEM (STEM). Mechanical properties of the CoCrFeMnNi HEA oxynitride thin film are addressed by a nano indentation method, and a hardness of 8.13 GPa and a Young’s modulus of 157.3 GPa are obtained. The observed high hardness value is thought to be the result of hardening due to the nanocrystalline microstructure.
        4,000원
        92.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu2ZnSn(S,Se)4 (CZTSSe) films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu(CZT) precursor films. The precursor was dried in a capped state with aqueous NaOH solution. The CZT precursor films were sulfo-selenized in the S + Se vapor atmosphere. Sodium was doped during the sulfo-selenization treatment. The effect of sodium doping on the structural and electrical properties of the CZTSSe thin films were studied using FE-SEM(field-emission scanning electron microscopy), XRD(X-ray diffraction), XRF(X-ray fluorescence spectroscopy), dark current, SIMS(secondary ion mass spectrometry), conversion efficiency. The XRD, XRF, FE-SEM, Dark current, SIMS and cell efficiency results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the sodium doping. Further detailed analysis and discussion for effect of sodium doping on the properties CZTSSe thin films will be discussed.
        4,000원
        93.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than 350 ℃, threedimensional structures consisting of cube-shaped Cu2O are formed, while spherical small particles of the CuO phase are formed at a temperature higher than 400 ℃ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional Cu2O thin films are preferentially deposited at a temperature less than 300 ℃, and the CuO thin film is formed even at a temperature less than 350 ℃. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.
        4,000원
        94.
        2018.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiN and CrN thin films are among the most used coatings in machine and tool steels. TiN and CrN are deposited by arc ion plating(AIP) method. The AIP method inhibits the reaction by depositing a hard, protective coating on the material surface. In this study, the characteristics of multi-layer(TiN/CrN/TiN(TCT), CrN/TiN/CrN(CTC)) are investigated. For comparison, TiN with the same thickness as the multilayer is formed as a single layer and analyzed. Thin films formed as multilayers are well stacked. The characteristics of micro hardness and corrosion resistance are better than those of single layer TiN. The TiN/CrN peak is confirmed because both TCT and CTC are formed of the same component(TiN, CrN), and the phase is first grown in the (111) direction, which is the growth direction. However, the adhesion and abrasion resistance of the multilayer films are somewhat lower.
        4,000원
        95.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적: 스마트 안경은 안경과 웨어러블 전자기기의 효과적인 융합을 잘 보여주는 어플리케이션이다. 스마 트 안경의 더 발전한 형태로, 전압에 의해 능동적으로 변색되는 안경의 제조도 가능할 것으로 기대된다. 따라서, 졸-겔 법에 의한 전기 변색 박막의 제조 과정에서 퍼콜레이션(percolation) 이론을 도입하여, 최적의 aging 조건을 찾아 전기 변색 코팅 박막 제조의 토대가 되고자 한다. 방법: 졸-겔 법을 이용하여 육 염화 텅스텐과 에탄올을 혼합하여 전기 변색 용액을 제조하였다. Aging에 따른 용액의 특성을 분석하고, ITO glass위에 전기 변색 박막을 코팅한 후, 리튬이온 기반 전해질을 이용하여 전기 변색 특성을 확인하였다. 결과: 졸-겔법으로 제조된 전기 변색 용액은 aging에 따라 텅스텐과 산소의 결합이 달라지며, 이것을 적 외선 분광법으로 분석하였다. WO3/ITO glass의 가시광선 전 영역의 광 투과도(시감 투과도)를 측정한 결과, aging에 따라 변색효율의 차이를 보였다. 또한, percolation이 충분히 진행되기 전 샘플의 경우, 광 투과도 가 착색 시 43.0 %, 탈색 시 63.6 %로 1.10의 가장 높은 광밀도를 보였다. 또한, aging이 충분히 진행된 후의 샘플은 착색 시 광 차단 효과가 좋은 결과값을 보였다. 결론: 졸-겔 법에 의해 제조된 변색 용액으로 전기 변색 유리를 제작하였을 때, 용액의 aging에 따라 광 학적 특성이 달라짐을 확인하였다. 긴 시간 aging하는 경우, 변색 효율을 가늠하는 광밀도가 감소하였다. 따라서, 변색효율이 좋은 렌즈가 필요한 경우, percolation 임계 점 이하의 aging 시간이 짧은 용액을 사용 하는 것이 좋으며, 진한 착색이 필요한 광학 샘플이 필요한 경우는 긴 시간 에이징한 용액으로 코팅막을 제 조하는 것이 좋을 것으로 판단된다. 이러한 코팅 박막에 대한 기초 조건의 연구가 향후 스마트 안경 등의 제작 시 참고가 될 것으로 기대된다.
        4,000원
        96.
        2018.05 구독 인증기관·개인회원 무료
        To remove SO2 from flue gas, a thin film nanocomposite (TFN) hollow fiber membrane was decorated with Nafion/TiO2 nanoparticles. Morphological and structural analyses of the TFN membranes were performed using FTIR, SEM, EDX, TEM, and AFM. The gas permeation experiments were performed with pure gases and a mixed gas within a pressure range of 1-3 bar and feed gas flow rate of 0.03-0.15 L/min. The obtained experimental results suggest that the addition of Nf/TiO2 nanoparticles improved the membrane performance by introducing sulfonate and hydroxyl functional groups to the membrane, and thus increased SO2 permeability and selectivity. The SO2 permeability was found to be 411-1671 GPU, while the ideal selectivities achieved for SO2/N2 and SO2/CO2 were 2928 and 72, respectively. Overall, an SO2 removal efficiency of 93% was achieved by using the Nf/TiO2 incorporated TFN membrane.
        97.
        2018.05 구독 인증기관·개인회원 무료
        Membrane fabrication is a critical area that hampers forward osmosis (FO) technology from industrialization. Herein, electrospun poly(vinyl alcohol) (PVA) nanofiber (NF) was used as a support layer for thin film composite (TFC) FO membrane. The PVA NF was incorporated with sulfonated graphene oxide (sGO). The oxygenous-rich sGO enhanced the hydrophilicity and mechanical strength of PVA NF as revealed by contact angle and tensile strength measurements, and pure water flux. On this support, the active polyamide layer was formed through interfacial polymerization. Meanwhile, FO performance of sGO/PVA TFC membrane is currently being evaluated. This work was supported by NRF of Korea funded by the Ministry of Science and ICT (2016R1A2B1009221 and 2017R1A2B2002109) and Ministry of Education (2009-0093816 and 22A20130012051 (BK21Plus)).
        98.
        2018.05 구독 인증기관·개인회원 무료
        We report on the fabrication of a high performance reverse osmosis membrane based on a hydrophilic polyacrylonitrile support via an aromatic solvent-assisted interfacial polymerization process. The use of aromatic solvent (toluene or xylene) produced the membranes with unprecedentedly high NaCl rejection (~99.9%) and superior water flux, outperforming both the control membrane prepared using a conventional aliphatic solvent (n-hexane) and commercial membranes. The membranes fabricated using toluene or xylene had roof-like structures covering a thin and highly dense polyamide (PA) layer, which was induced by enhanced amine diffusion and the extended miscible layer resulting from the increased miscibility of aromatic solvent with water. The high performance of the membranes is attributed to thin and highly cross-linked basal PA layer.
        99.
        2018.05 구독 인증기관·개인회원 무료
        Growing demands for reducing energy consumption have raised interest to design advanced materials for thin film composite (TFC) desalination membranes with high permselectivity and low fouling. Here, we synthesized a star-shaped polymer as a new building block material, which can be assembled into selective layer of the TFC membrane via a facile interfacial polymerization (IP). Star polymer with compact globular structure and high density amine functional groups enabled to fabricate higher permselectivity and lower fouling propensity membrane compared to commercial membranes. In addition, star polymer assembled TFC membrane can function as either nanofiltration or reverse osmosis membrane by simply adjusting IP process conditions, which cannot feasible in conventional materials, demonstrating remarkable versatility of our star polymer.
        100.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/ SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below 350℃. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and H2O increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., Al2O3) that can sufficiently prevent the diffusion of impurities into the channel.
        4,000원
        1 2 3 4 5