Geopolymer foam block was prepared and its characteristics discussed to evaluate the possibility of replacing blastfurnace slag (below BFS) with melting slag in this study. 10~20wt% of BFS was replaced with melting slag. And also10wt% of mine tailing was replaced with fly ash discharged from municipal solid waste incinerator (below MSWI). Thecompressive strength of foam block prepared was similar to that of foam block prepared without replacing BFS. Andalso it was increased by replacing 10wt% of mine tailing with MSWI fly ash. Considering these results, melting slagmay be used instead of BFS without damaging the quality of foam block.
In this study, Blast furnace-based has been manufactured by utilizing recycled aggregates and gypsum as alkali activator. Comparing with the common geopolymer concrete, Using recycled aggregates and gypsum as activator could be identified to applied in low strength concrete.
Incinerated sewage sludge ash (ISSA) is regarded as a valuable resource having great potential for the recycling ofphosphorus. The P content of ISSA is known as around 10% as a P. Therefore, this study was undertaken to investigatethe precipitation and separation characteristics of phosphorus from the acid-extracted solution of ISSA. The incineratedsewage sludge ash was leached by 1N sulfuric acid with solid/liquid ratio of 10 for 30min. The extracted solutioncontained about 1.1% of P and other metals, Al, Fe, Ca and Mg, with over than 1,000mg/L. Some heavy metals suchas Cu, Pb and Cr are presented as impurities as well. Most of Al and Fe in the extracted solution were precipitated withP when titrating it to pH 3.6. The precipitated form were assumed to AlPO4, FePO4·2H2O respectively, and Pb and Crwere precipitated in this stage as well. At this experiment, about 62.9% of the initial P was precipitated and removedfrom the solution. It was also find that all of the P extracted can not be recovered as a precipitate with a simple additionof NaOH, even though titrated to pH 11.6. The precipitated P also contained some impurities such as Al, Fe, and someheavy metals, which means that further researches are needed for the efficient separation and recovery of P from ISSA.
This study describes the design and corrosion-resistant materials for a high-efficiency waste-to-energy (WtE) plant. WtEtechnology is one of the most robust and effective alternative energy options to reduce CO2 emissions and to conservelimited fossil fuel resources, which are used by traditional power plants. The recently published 3rd edition of the CEWEP(confederation of european waste-to-energy plants) energy efficiency report demonstrated the energy efficiency criterion(R1 formula) that was introduced in the waste framework directive and has proven to be an incentive for WtE plants inEurope to improve their energy efficiency. The design combines the optimal use of the corrosion resistant properties ofinconel with an efficient boiler design (Amsterdam) and turbine layout. It uses a steam-steam reheater to realize thisefficiency as well as high availability and low maintenance. The high-efficiency WtE plant is an economical choice thatmakes a very positive contribution to sustainable electricity production.
Municipal solid wastes incinerator (MSWI) bottom ash and melting slag are used to prepare external panel for increasingthe recycling rate of them in this study. In case of external panel, the most important property is flexural strength. Becauseit is easily distorted by external force. Wasted glass fiber (below WGF) is used to increase the flexural strength of externalpanel. Flexural strength of prepared panel was 14.6MPa of the mixing ratio of 3.0wt% WGF. But compressive strengthwas decreased with the addition of WGF. Because L/S ratio has to be increased to enhance the workability at high additionamount of WGF. High liquid content hinders geopolymer formation. But compressive strength (about 20MPa) was notlow at this condition.
하수종말처리장에서 발생하는 슬러지 발생량은 매년 증가하는 추세이다. 이 슬러지는 지금까지 해양투기와 매립에 의존해왔지만, 런던협약으로 인해 2012년부터 해양투기가 금지되었으며, 매립지 확보문제, 주민의 민원 등이 문제가 되고 있다. 그리하여 소각을 통해 슬러지를 처리하고 있는 것이 현실이다. 소각이 이루어지면서 많은 온실가스가 발생된다. 그중 소각으로 인해 발생하는 많은 물질 중 아산화질소(N₂O)는 대표적인 온실가스 중 하나이다. N₂O가 지구 온난화에 미치는 영향은 CO₂가 미치는 영향의 약 10 % 정도지만 대기 중에서 매우 안정하기 때문에 150년 동안 체류하며, 지구온난화지수(GWP: Global Warming Potential)를 보았을 때는 CO₂에 비해 310배나 높다. 하수슬러지는 화석연료에 비해 높은 함량의 질소성분을 함유하고 있어서 소각 시 고농도의 질산화물의 발생이 예측되고 슬러지의 무기물 중에 여러 가지의 중금속이 함유되어 있어 무해화 소각시스템 개발이 요구되고 있다. 이에 선진국에서는 감량화, 무해화, 자원화를 동시에 하고자하는 소각처리방법을 채택하고 있다. 유동층 소각과 같이 고정 연소장치에서 N₂O의 발생을 억제하는 방법으로는 연소온도의 상승, 산소농도의 저하, 접촉입자와의 혼합 촉진, 고압화(가압유동층 연소) 등이 있다. 이러한 방법의 문제로는 연소효율이 탈황율의 저하를 일으키는 경우가 발생하며, 유동층연소에서 N₂O 생성을 감소시키면 NOx의 생성이 증가하는 경우가 대부분이므로, 확실한 N₂O 억제로 보기 어려운 것이 현실이다. 본 연구에서는 하수슬러지를 소각시 유동매체를 사용하여 발생하는 온실가스인 N₂O의 발생은 억제하고자 실험을 수행하였다. 이때 유동매체의 변화로 인한 N₂O의 발생량을 알아 보았으며, 과잉공기비, 유동매체의 양, 등을 변화를 시키며 N₂O발생량의 변화를 지켜보았다. 그리하여 유동매체의 사용으로 효과적인 N₂O저감을 시킬 수 있을 것이며, 최적은 운전조건을 규명하고자 하였다.
제4차 전국폐기물 통계조사(‘13.3, 환경부)에 따르면 현재 국내에서는 년간 1,593천톤의 소각재가 발생하며 그중 대부분인 1,227천톤(약 77%)은 단순매립으로 처리되고 있고, 단지 366천톤(약 23%)의 소각재만이 재활용되고 있다. 그러나 최근 수도권 자치단체의 “매립폐기물 제로화” 선언, 매립부담금, 순환자원 사용 확대 등을 주요골자로 하는 “자원순환사회 전환촉진법” 제정 등이 추진되고 있어 그 어느 때 보다도 더욱 새로운 대안모색이 절실히 요구되고 있다. 본 연구는 대부분 매립에 의존하던 생활폐기물 소각 바닥재를 매립지내 매립가스 소각후 발생되는 배가스를 이용하여 탄산화과정을 통해 지구온난화물질인 CO2는 소각재에 포집하고 소각재는 유해 중금속의 용출이 억제된 순환골재로 재활용하고자 하는 실증연구로 진행되었다. 반입된 소각재는 불순물 제거, 입도선별, 철분류 등의 전처리를 거친후 2차 입도선별을 통하여 100 mesh 이상의 큰 입자는 입자표면에 탄산염층을 생성하는 건식 탄산화 공정과 탈염 공정 등 안정화 과정을 거쳐 순환골재로 재생되며, 생산된 순환골재의 도로용 보조기층재로서의 적합여부를 확인하기 위하여 한국건설생활환경시험연구원에 순환골재 시험분석을 의뢰한 결과 도로보조기층용 순환골재(KS규격 KS F 2474)와 비교한 결과 기준에 적합한 것으로 확인되었다. 본 연구는 환경부 차세대 핵심환경기술 개발사업의 연구비 지원으로 수행되었으며, 이에 감사드립니다.
최근 국내의 재건축, 재개발 등의 활성화로 인해 건설폐기물이 지속적으로 발생하며 그 발생량은 증가하고 있는 추세이다. 건설폐기물은 증가하는 만큼 건축자재의 수급 또한 증가하여 건축자재를 얻기 위해 강가 훼손, 채굴, 벌목 등으로 자연환경을 파괴하게 된다. 또한 건물 해체 시 불필요한 물질들이 대량으로 배출되는 등 자연과 생태환경 변화를 야기 시키고 있어 적절한 관리가 필요로 하고 있다. 발생한 건설폐기물 소각재를 재활용하는 방안으로 본 연구에서는 건설폐기물 소각재와 황토, 일라이트를 주원료로 사용하여 내장용 벽돌의 제작 가능성을 검토하고자 하였다. 기초시료인 건설폐기물 소각재, 황토, 일라이트를 분석한 결과, 소각재, 일라이트는 SiO₂, Al₂O₃ 성분이 약 70 ~ 80%로 주를 이루었고 황토의 경우, 고창 황토는 붉은 색을 띄는 철 성분이 많이 함유되어 있어 SiO₂, Al₂O₃, Fe₂O₃가 주를 이루고 있다. 소각재, 황토, 일라이트를 비율별로 혼합하여, 1100℃, 1130℃, 1200℃ 온도별로 소성하여 일반점토벽돌 기준에 명시되어 있는 압축강도와 흡수율을 측정하였다. 그 결과 15:65:20(소:황:일) 혼합율로 1130℃에서 소성시켰을 때, 압축강도는 보통벽돌 품질 2종인 150 kgf/cm² 이상을 보였으며, 흡수율은 1종의 14% 이하로 나타나 벽돌로써의 가능성을 판단할 수 있었다. 제작한 벽돌을 가지고 더 나아가 황토와 일라이트의 기능인 탈취, 흡착에 관한 실험과 원적외선, 음이온 방사에 대한 조사를 진행할 예정이다.
화석연료의 환경오염문제와 자원고갈에 의한 에너지 수급 문제는 폐기물 에너지를 신재생에너지로 사용하는 패러다임의 변화를 가져왔으며 2005년부터 시행된 쓰레기 종량제의 시행은 폐기물 성상에 많은 변화를 가져왔다. 본 연구 대상지역은 소각로 용량(100Ton/day)에 비하여 소각시설로 반입되는 생활폐기물 양이 부족하여 이에 대한 해결방안으로 폐목재, 폐가구등의 대형폐기물 혼합소각에 대한 연구를 하였다. 생활폐기물 소각시설에 반입되는 생활폐기물과 폐목재, 폐가구등의 대형폐기물의 조성 및 삼성분 발열량을 분석하고, 생활폐기물과 대형폐기물 혼합비율을 각각 무게기준 0%, 10%, 20%, 30%로 하여 소각 후 발생되는 연소가스를 분석하였다. 생활폐기물 발열량은 약 3477 Kcal/kg이고, 삼성분 분석 결과 수분 26.45%, 가연분 64.61%, 회분 8.94%으로 나타났으며, 대형폐기물 분석결과 발열량 4595.47 Kcal/kg, 수분 26.83%로 나타났다. 각각의 시료들을 반건식 반응탑, 여과집진기와 SCR(Selective Catalytic Reduction)의 연소가스 처리설비를 갖춘 소각시설에 소각 후 연소가스를 분석한 결과 Dust, NOx, CO, SOx는 큰 변화가 없었던 반면 HCl은 배출허용기준을 근접하는 것으로 나타났다. HCl의 경우 대형폐기물을 30% 혼합 소각하였을 때 최고 18.4ppm의 배출농도를 나타내어 현행 배출허용기준(20ppm)에 근접함으로써 혼합소각이 적합하지 않음을 알 수 있었다. 그러나 대형폐기물을 20% 혼합소각 하였을 때는 생활폐기물만 소각할 때와 비교하여 약 2ppm 증가하는 수준에 그쳐 별도의 대기오염방지설비의 추가 없이도 20%까지 충분히 혼합소각이 가능할 것으로 판단되었다. 현재 운영 중인 생활폐기물 소각시설에서 대형폐기물을 혼합 소각할 경우, 혼합비율에 따라 소각특성과 Dust, SOx, NOx, CO, HCl 등의 대기오염물질 발생량과 농도에 변화가 있었으나 대형폐기물을 무게기준 20%까지 혼합 소각할 경우에는 현재 운영되고 있는 연소가스처리시설 만으로도 충분히 현행 대기오염물질 배출허용기준을 만족시킬 수 있음을 알 수 있었다. 본 연구결과 생활폐기물 소각시설에서 폐기물 부족현상을 해소하고 대형폐기물의 에너지화의 가능성을 알수 있었으며 유사도시의 소각시설 설치시 특성자료로 제공 하고자 하였다.
K시의 소각장은 2000년 5월 시험가동으로 2기(스토거방식) 처리시설로 400ton/day의 생활쓰레기를 처리하면, 계통도는 쓰레기 반입, 쓰레기크레인, 소각로, 페열보일러, 반건식반응탐, 백필터, 탈질설비, 증기터빈발전기, 연돌소각처리 등으로 처리 하며, 소각과정에서 생성되는 폐열을 회수, 증기를 발생시켜 이 증기를 이용해서 장내 열원 및 소비전력을 보충하는 설비시설을 갖추고 있다. 그러나 그림 1과같이 사용 후 4 ~ 5년 후 부터는 산소농도가 증가하여 최근 3년간 급격히 상승해지고 있는 추세이며 2호기의 산소농도가 1호기 보다 높아지고 있어 배기가스 중 CO, SOx, HCl, NOx의 농도는 증가 하는 것으로 나타나고 있다. 본 연구는 소각로의 적정공기량을 투입하여 산소농도를 낮추어 대기배출 농도를 저감하기 위한 연구이다. 산소농도가 너무 높거나 너무 낮아도 문제가 되며 산소농도가 너무 높을 경우 모든 측정항목에 영향을 줌으로서 세심한 관심이 필요하다. 산소농도만 제어를 잘하면 CO는 물론 다른 항목의 제어 관리도 빨리 대처를 할 수 있다. 운전 중 가장 안정적인 범위는 이론상으로는 7 ~ 9%이나, K시의 소각설비는 10년 이상 운영으로 그동안에 많은 변화가 있어 산소농도는 약 9 ~ 13%로 높게 분석되었다. 1차 연소공기는 연소과정에는 직접적으로 영향을 주지만 연소실 내부의 유동장에는 큰 영향을 주지 않는 것으로 알려져 있고, 반면에 2차 연소공기는 불완전 연소물질의 2차 연소실에서의 연소를 촉진시키는 역할뿐만 아니라 연소실 내부의 유동형태를 크게 변화시키므로 미분입자의 이원방지, 화염높이의 적정유지, 연소가스 농도의 균일화 등 연소실내부의 연소상황을 제어하는 역할을 수행한다는 연구 문헌을 중심으로 본 연구 내용은 2차송풍량을 산소농도에 비례하여 송풍량이 자동으로 조절되어 소각로 내에 과잉송풍량이 들어가지 않고 산소농도에 맞게 송풍량을 주입하는 방법으로 DCS프로그램을 보완하였다. 그 결과 그림 2와 같이 대기배출 가스의 농도가 전년도에 비해 감소하였으며 약품사용량도 감소한 것으로 나타났다.
소각처리에서 나오는 잔사는 전체 투입 폐기물 부피의 약 10% 정도로 매립지의 사용연한을 연장시키는 장점을 가지고 있다. 하지만 소각 시 발생되는 비산재와 바닥재에서는 유해중금속(Pb, Cu, Cd 등)이 고농도로 함유되어 있어 매립 시 용출에 의한 2차 토양오염을 유발할 가능성이 높다. 이에 따라 환경부에서는 유해중금속에 대한 배출기준을 마련하였으며 사업장에서는 배출기준 준수를 위해 추가적인 수세 및 약품처리 등을 하고 있는 실정이다. 본 연구는 I시 C광역쓰레기 소각시설에서 발생하는 소각재를 대상으로 유해중금속의 안정적 처리방안과 킬레이트제의 적정사용량 산출을 통해 처리비용을 절감하고 소각재의 재활용 가능성을 파악하기 위하여 수행하였다. 킬레이트제 희석에 따른 바닥재의 Cu 처리효율은 10배 희석 시 91.1%, 11배 희석 시 76.6%, 12배 희석시 60.5%, 13배 희석 시 56.7%로 조사되었으며 소각재(바닥재+비산재)의 Pb 처리효율은 10배 희석 시 72.8%, 11배 희석 시 65.9%, 12배 희석 시 64.9%, 13배 희석 시 61.2%로 조사되었다.
최근 자원 순환과 재활용에 관련된 많은 연구가 지속되면서, 폐기물의 처리와 재활용에 대한 관심이 많아지고 있다. 폐기물관리법 상에서의 폐기물은 쓰레기, 소각재, 오니, 폐유, 폐산, 폐알칼리 및 동물의 사체 등으로서 사람의 생활이나 사업 활동에 필요하지 않게 된 물질들을 말한다. 폐기물의 분류는 크게 생활폐기물과 사업장폐기물로 이루어져 있으며, 그 특성에 따라 사업장 일반폐기물, 건설 폐기물, 지정 폐기물 등으로 나뉜다. 또한 지정폐기물은 폐기물관리법에서 지정한 물질들로 분류가 되며, 대부분 인체에 유해한 물질을 포함하고 있어 안정적인 처리를 필요로 한다. 2010년 국내에서 발생한 지정폐기물은 총 3,463,240 톤으로 매년 꾸준히 증가하는 추세를 보이고 있으며, 그 중 사업장 지정폐기물은 3,348,186톤, 의료 폐기물은 115,054톤 씩 각각 발생하였다. 이렇게 발생된 지정폐기물은 종류에 따라 소각, 고온소각, 고온용융, 고형화, 매립, 물리・화학적 처리, 재활용의 7가지 처리방법으로 있으며, 각 처분 방법에 따라 재활용 56.1%, 매립 19.3%, 소각 18% 등의 비율로 처리 되었다. 지정폐기물은 그 자체에 유해한 물질을 포함하고 있기 때문에, 적절한 처리기술을 적용하여 포함된 유해물질을 제거하면 재활용 및 자원화를 통해 자원순환이 이루어질 수 있다. 본 연구에서는 소각재에 포함된 유해물질 함유 여부를 다양한 방법을 통해서 확인하고, 국내 지정폐기물 분류 기준 및 국외 자원 재활용 기준을 바탕으로 폐기물 재활용 가능여부를 확인하였다. 또한 소각재의 처리 기술에 대한 검토를 통해, 매립 및 소각 처리되는 기존의 유해폐기물들에 대한 안전관리와 자원순환에 대한 방법을 제시하고자 하였다. 소각재의 분석은 국내 폐기물 관리법에서 지정된 중금속에 대한 함유량을 확인할 수 있는 용출시험과 국외 폐기물 재활용 기준에서 필요로 하는 항목들을 확인하기 위한 시험으로 나눠져 진행되었다. 국내 폐기물관리법에서 제시하고 있는 용출시험 결과를 통해서는 바닥재와 비산재 모두 지정폐기물의 항목에 포함되지 않았다. 하지만 전원소 분석을 통한 함량시험에서는 카드뮴(Cadmium) 농도가 국외 폐기물 재활용 기준을 만족하지 못하였으며, 그 외에도 겉보기 밀도, 강열감량 등에서 재활용 기준을 만족하지 못하였다. 이와 같은 결과를 바탕으로 소각재에 포함된 카드뮴의 안전관리와 효율적 재활용을 위한 폐기물 처리 흐름도를 작성하여 제시하고, 최적가용기술 적용을 통해 유해물질의 효율적 관리가 가능하게 하고자 하였다.
Infectious diseases in domestic animals of carcase were increasing every year. According to the monthly report for infectious disease from Ministry for Food, Agriculture, Forestry and Fisheries, 11,954 heads of cattle, 518,178 heads of pig, 232,850,244 heads of bird were reported in 2011. Infectious diseases of carcase almost spread on a national scale. Dead or emergency preventive carcase are completely treated on bury. Since the treatment of carcase on bury are generating soil, underground water and source water pollution, introduction of new preventive system should be considered. In this study, literature survey and case studies to prevent the spreading of virus for infectious disease and second environmental pollution were investigated. The actual experiments using the existing incineration facilities were also performed to ensure the possibilities of safe treatment of carcase. On the other hand, the moving-type incineration are also being developed and its operation manual will be prepared. Among the investigated incinerators, stoker type incinerator was not suitable for the treatment of carcase, however, other incinerators such as fluidized-bed type incinerator, rotary kiln type incinerator ware shown to be suitable. But even for the stoker type incinerator, if the pre-treatment facilities( grinding, crushing) are installed, it will also be a suitable method. The analytical results for air pollutants(including dioxin) emitted from the final exit were all satisfied to the air pollution emission standards.
The amount of municipal solid waste (MSW) is steadily increasing leading to an urgent need for the effective treatment of these wastes. Incineration is one of the methods for the treatment of these solid wastes. The bottom ashes produced from the incineration process are very unstable at standard atmospheric conditions, so there is need for process to alleviate the ash problems. In this study, the bottom ashes were first converted into the slurry form and then the slurry was made to react with CO2 to produce the carbonates. This carbonate process by using bottom ashes and carbon dioxide will be source recovery technology from waste material and, moreover, will also help to reduce the amount of CO2 emissions. The aim of this study was to determine the optimum conditions for the precipitation of CaCO3 using Aspen plus modeling program. The temperature and pressure for the precipitation of CaCO3 process were varied 25 to 500oC and 1.05 bar to 90bar, respectively. For producing the slurry, the optimum ratio of H2O to calcium oxide was determined to be 10 : 1. And the optimum precipitating conditions for calcium carbonate process system were found to be at 35 bar - 210oC.
Recycling the bottom ash from MSWI (Municipal solid waste incinerators) ash is required to reduce the secondary pollution. We characterized the bottom ash and investigated the possibility of application for subsidiary ceramic raw materials. Major components of bottom ash are analyzed as CaO, Al2O3, SiO2, P2O5, MgO, Fe2O3, which are the same components of the earth’s crust. This similarity of components implied that bottom ash could be recycled as ceramic products through systematic treatment. Considering the plasticity and water absorption results, the ceramics, which are the mixture with 74 wt % bottom ash and 26 wt% Pink Kaolin, showed 1.39% water absorption after sintering 1150oC for 1h. This result indicated the possibility of recycling of bottom ash for subsidiary ceramic raw materials.