검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 141

        41.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A numerical approach for ventilated disc brake with holes is carried out to investigate the effect of holes on the heat transfer characteristics. The numerical simulation code STAR-CCM+ is utilized to calculate flow and temperature fields with polyhedral meshes. The steady state results show that the holes make the flow velocity on the outer surface increasing, which induce the improvement of convective heat transfer on the outer surface. In the ventilated channel with holes, the convective heat transfer can be reduced due to the inflow of hot air through holes. In unsteady state, the disc has reached the highest temperature in 1,8s since the brake was engaged. The surface of disc without holes has maximum temperatures along the ventilated channels, while the surface temperatures of dis with holes are uniform.
        4,000원
        42.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the appearance change and the heat․moisture transfer properties of knitted fabric by yarn shrinkage were examined to obtain useful data on the development of thermo-sensitive functional materials. Eleven types of knitted fabric were knitted using highly bulky acrylic-blended yarn. After shrinking the specimens using dry heat treatment, the appearance change and thickness were measured. An HEC simulator was adopted for measuring the heat․moisture transfer properties of specimens by yarn shrinkage. When holes were arranged vertically in the mesh structure, the specimens with 2,500 and 5,000 holes showed high percent change of hole area, appearance, and thickness. When holes were diagonally arranged in the mesh structure, the percent change of hole area in the specimen with 1,250 holes was larger than the one with 2,500 holes. However, the dimensional stability of the specimen with 2,500 holes was better because of its smaller appearance and thickness change. In the tuck structure, the percent change of hole area in the specimen with 625 and 416 holes was relatively large compared with the appearance and thickness change. Furthermore, the hole size in the tuck structure was smaller than that in the mesh structure but the percent change of hole area was larger. Therefore, it was proved that the tuck structure is more suitable than the mesh structure for developing thermo-sensitive functional materials. Heat․moisture transfer property test verified that the change of hole area by yarn shrinkage enabled obtaining the thermal effect due to the distinct temperature difference in the inner layer.
        4,500원
        43.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An experimental investigation is performed to study the effect of jet to plate spacing and low Reynolds number on the local heat transfer distribution to normally impinging submerged circular air jet on a smooth and flat surface. A single jet from a straight circular nozzle of length to diameter ratio(l/d) of 83 is tested. Reynolds number based on nozzle exit condition is varied between 500 and 8,000 and jet to plate spacing between 0.5 and 8 nozzle diameter. The local het transfer characteristics are obtained using thermal images from infrared thermal imaging technique. It was observed that at lower Reynolds numbers, the effect of jet to plate distances covered during the study on the stagnation point Nusselt numbers is minimal. At all jet to plate distances, the stagnation point Nusselt numbers decrease monotonically with the maximum occurring at a z/d of 0.5 as opposed to the stagnation point Nusselt numbers at high Reynolds numbers which occur around a z/d of 6.
        4,000원
        44.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the performance of a small - sized wave heat exchanger to be applied to the white smoke reduction system was experimentally confirmed. The heat transfer rate, drain and pressure drop were measured according to the air flow rate, water flow rate and relative humidity change of the wave heat exchanger for two kinds of pitch numbers. A constant temperature and humidity calorimeter and a constant temperature water bath were used to measure the performance of the wave heat exchanger. The heat transfer rate and drain increased gradually with changes of water flow rate. Case 2 showed more than 50% higher heat transfer rate and drain than Case 1. The increase of air heat transfer rate and drain according to air flow rate was greatly increased when the number of pitches was the same or increased, unlike the result of water flow rate change. In the temperature visualization using a thermal imaging camera, it can be seen that as the water flow rate and the number of pitches increase, the heat transfer becomes more effective in Case 2.
        4,000원
        46.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Shape optimization is needed to enhance the performance or efficiency of many industrial products, for instance, such as small-scale electric parts, automotive design and so on. In, especially, small-scale apparatus with heat transfer, it is not easy to decide optimal shape of apparatus. Therefore, the shape of power auxiliary apparatus in automotive engine was investigated using numerical analysis which includes k- model and unsteady state. The relations between temperature and heat transfer were simulated in case of 3 Type and 3 Point for power auxiliary apparatus. As the results, the heat transfer was decreased due to flow recirculation in case of Type-1. Further high temperature did not always mean high heat transfer when the shape interacted with surrounding fluid.
        4,000원
        47.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the heat transfer characteristics of pilot wave heat exchanger for white smoke reduction system was investigated. The performance of the wave and honeycomb heat exchanger combined with the first stage, second stage and third stage was tested using a calorimeter. Air and water inlet/outlet temperature and flow rate, pressure drop and dehumidification amount were measured to compare the heat transfer performance according to the type and the combination of heat exchanger. The heat transfer rate and dehumidification amount of the wave heat exchanger were higher than that of the honeycomb heat exchanger, and the pressure drop was low. As the stage increased, the heat transfer rate and the increase of the dehumidification amount were more pronounced, and the pressure drop linearly increased. The wave heat exchanger had a lower flow resistance than the honeycomb heat exchanger with the honeycomb structure and had a higher heat transfer effect due to the convection, so the water outlet temperature was higher in the wave heat exchanger.
        4,000원
        48.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, single-phase heat transfer characteristics for downstream flow in the support grid of 6×6 rod bundle were investigated. It has been known that a turbulence generation due to a support grid with split mixing vanes enhances heat transfer in rod bundle but its heat transfer enhancement actually affects to relatively shorter distance. On the other hand, it has been also turned out that a support grid with large scale vortex flow (LSVF) mixing vanes results in heat transfer enhancement to a longer distance. Based on the results of literatre survey, single-phase water heat transfer experiments were performed for Reynolds numbers at around 30,000, and the heat transfer enhancement effect with both i) the split mixing vanes and ii) the LSVF mixing vanes was compared in this study. The key results showed that the effect of heat transfer enhancement in rod bundle region by the split mixing vanes was maintained up to the length of 15Dh behind the spacer grid. For the Reynolds numbers at around 30,000, it was also observed that the effect using the LSVF mixing vanes was stronger at about 3% when compared to the case using the split mixing vanes only for the distance ranging from 1 to 15Dh behind the spacer grid.
        4,000원
        49.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The heat transfer characteristics of forced convection according to the geometric shapes with four rectangular blocks in a horizontal PCB channel was analyzed numerically using SST (Shear Stress Transport) turbulence model. As the boundary condition for CFD (Computational Fluid Dynamics) analysis, the inlet temperature and air velocity were respectively 300 K and 3.84 m/s and the heat flux of the block surface was 358 W/㎡. The shape factors of block were width, height, spacing and channel entrance height. As the results, the heat transfer rate was decreased as the width ratio (x/h) was increased, while it was increased as the height ratio (h/x) is increased. Also as the block spacing ratio (s/x) was increased, the heat transfer effects was not significantly affected. And as the channel entrance height ratio (H/x) was increased, the heat transfer performance was decreased.
        4,000원
        50.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the heat flow characteristics of wave heat exchanger was investigated by being applied to the white smoke reduction system. Through numerical analysis, the heat transfer and flow characteristics of the wave heat exchanger with the change of inlet condition of air-side and water-side were analyzed. To investigate the temperature, the absolute humidity, heat transfer rate, pressure drop and turbulence characteristics of the wave heat exchanger, the simulation analysis was conducted by using the commercial computational fluid dynamics software (Solidworks Flow Simulation) under uniform flow conditions. As the inflow rate of air decreased and the inflow temperature of water increased, the heat transfer coefficient of the wave heat exchanger decreased. When the experimental conditions of water-side were the same, the air outlet temperature and absolute humidity of the wave heat exchanger increased with increasing inflow rate of air. To reduce the white smoke, the air outlet temperature and absolute humidity of the wave heat exchanger must be reduced. Therefore, the lower the air velocity and the water inflow temperature into the wave heat exchanger, the more effective it is.
        4,000원
        51.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.
        4,000원
        52.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated to the heat transfer performance of coating nano-structure with various shapes and patterns on the heat transfer surface. As a result of the measurement of the 3D nano shape, it was confirmed that the roughness generally increases when the adhesive is sprayed on the coating surface and finished durability experiment. In the case of TEOS adhesive, the roughness increased by 0.074 ㎛, 0.012 ㎛ and 0.015 ㎛, and the contact angle decreased 12.64°, 1.31°, 9.84° at the coating time of 120 seconds, 180 seconds and 240 seconds, respectively. In the case of PVA adhesive, the roughness increased by 0.069 ㎛, 0.056 ㎛ and 0.03 ㎛, and the contact angle decreased 2.85°, 4.82°, 6.96° at the coating time of 120 seconds, 180 seconds and 240 seconds, respectively. In the case of DGEBF adhesive, the roughness increased by 0.042 ㎛, 0.053 ㎛ and 0 ㎛, and the contact angle decreased 0.81° at the coating time of 120 seconds, increased 4.82°, 6.96° at the coating time of 180 seconds and 240 seconds, respectively. As a result, the durability tends to decrease as more nano-structures are deposited, and 3D nano shapes, contact angles and SEM photographs showed that the performance of the PVA adhesive was superior among the three adhesives.
        4,000원
        53.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerical models of composite floor systems with various thickness of phase change material and sizes of circular spacers were developed based on finite element analysis. In order to perform a heat transfer analysis, thermal properties of steels were determined and those of phase change material were estimated from experiment results. In addition, the thermal insulation performance of composite floor systems with respect to different thickness of phase change material and sizes of circular spacers was predicted. To verify the validity of analysis, analysis results were compared with vertical furnace fire test results of equivalent conditions. As a result, available thicknesses of phase change material and sizes of circular spacers were proposed to satisfy the thermal insulation criteria of Korean Standards.
        4,000원
        54.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The heat transfer of Jet impingement is a very effective technique for exchanging high heat fluxs between a heated plate and a fluid. The purpose of current investigation is to carry out the experiment in order to study heat transfer characteristics between a vertical round water jet and a horizontal surface for different flow rates and geometric conditions. The effect of flow rates on heat transfer were investigated. The data obtained in this study are represented in terms of Nusselt number as a function of Reynolds and Peclet numbers. The correlation for the Nusselts number in terms of the Peclet number and  was obtained. The proposed correlation predicts the current data of heat transfer very well.
        4,000원
        55.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        1차원 등엔트로피 모델과 통합된 경계층 적분법은 초음속 노즐의 설계과정에서 내열재 표면의 열전달을 예측하는데 효과 적으로 사용되고 있지만 노즐 목과 같이 2차원 효과와 경계층과 노즐 코어유동의 상호작용이 발생하는 지점에서는 경계층 외부유동 해석의 부정확성으로 해석의 정확도가 감소한다. 따라서 본 연구에서는 경계층 적분법을 이용한 열전달 예측의 정 확도를 향상시키기 위해 CFD를 이용하여 2차원 효과와 노즐 코어유동의 상호작용이 고려된 경계층 외부유동 조건을 도출 하고 이를 경계조건으로 하는 해석기법을 개발하였다. 오일러 모델과 SST k-ω 모델을 CFD로 해석하여 경계조건으로 적용 했으며 계산방법을 검증하기 위해 선행문헌의 실험노즐에 대해 해석을 수행하였다. 계산 결과 CFD를 통해 경계층 외부유동 조건을 도출한 해석에서 노즐 열전달의 정확도가 향상되는 것을 확인하였으며 특히 노즐 목 후방과 팽창부에서의 차이가 크 게 나타났다. SST k-ω모델로 도출된 계산결과는 1차원 등엔트로피 모델과 비교 시 팽창부에서 실험결과와의 오차가 16% 감소하였다. 본 연구에서 개발된 해석기법은 향후 로켓노즐의 내열설계에 유용하게 사용될 것으로 평가된다.
        4,000원
        56.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we designed the 3-dimensional tire mold according to the A automobile company’s tire model, and analysed the distribution of temperature of mold using the numerical method when the heat flux and heat transfer time at the surface of tire mold were changed. A analysis region of mold was the 1/16 of entire mold, and the grid number was about more than 880 thousand. In order to analyze the temperature change of mold, the thinnest part of the mold was chosen as the research object, and then the temperature of 6 points on the vertical downward direction of the thinnest part was analyzed with the time change. While the numerical condition was that heat flux was 321,200 W/m2, 440,000 W/m2 and 880,000 W/m2, and measuring time was 0.1 second, 0.2 second, 0.5 second and 1 second, respectively. As a result, the temperature difference between the surface temperature and the lowest temperature of mold was 7.3℃ when the heat transfer time was 0.1 second. Also, the minimum temperature difference was almost 0.11℃ when the heat transfer increased to 1 second. It can be explained that the main material of tire mold was aluminum and its thermal conductivity was high (k=140 W/m·K). In addition, when the heat transfer time was more than 1 second, the heat flux of mold surface will be transmitted at the inside of the thinnest part, and the heat transfer will be a marked difference according to the shape of the thinnest part.
        4,000원
        57.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        단동 이중비닐하우스에서 수막에 의한 열전달 특성 및 가온효과를 구명하기 위하여 작물이 재배되는 수막온실의 실내외 기온과 수막의 수온 등을 계측하였고, 단위 피복면적당 수막에 의한 총 공급열량, 열관류율, 관류열량, 온실 내부로 전달되는 열량비율 변화를 비교·분석하였다. 1중과 2중사이의 기온은 외부기온보다는 수막유량과 공급수온에 따라 결정되는 것으로 나타났다. 수막유량이 증가할수록, 공급수온이 높을수록 수막과 2중 하우스 내부와의 열관류율(UW-IN)은 유의하게 증가하는 경향을 보였다. 그러나 수막유량과 공급수온이 일정조건(수 막유량 0.00266L·m-2·s-1, 공급수온 19.8oC) 이상에서는 UW-IN 값이 10W·m-2·oC-1 정도로 수렴되는 것으로 나타났다. 수막과 1·2중 공기 사이의 열관류율(UW-B)의 경우에도 수막유량 및 공급수온에 따라 증가하는 경향을 보였으나, 경향성은 상대적으로 작은 것으로 분석되었다. UW-B는 연구자에 따라 전체적으로 큰 차이를 보이고 있으며, 본 연구에서는 3.27~4.44W·m-2·oC-1의 범위를 보였다. 수막에 의한 총 공급열량(QW)과 온실 내외부로 전달 되는 관류열량(QW-IN, QW-B)의 경우, QW 값이 QW-IN과 QW-B의 합과 매우 유사하게 일치하고 있어 본 연구에서 제시한 결과가 신뢰성이 있음을 확인할 수 있었다. 수막에 의해 내부공기를 가열하는데 사용되는 열량은 최대 57% 수준으로 분석되었고, 우리나라 수막재배온실의 경우 약 22~28% 수준으로 판단된다. 본 연구는 농업인이 실제 사용하는 수막온실과 가장 유사한 조건에서 수막에 의한 온도변화, 열관류율과 관류열량을 계량화함으로써 향후 경제적인 수막온실 설계 시 활용할 수 있을 것으로 기대된다.
        4,000원
        1 2 3 4 5