검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 76

        42.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        This study investigated ginseng growth and ginsenoside contents after control a reserved ginseng cultivation land using various green manure crops for stable ginseng cultivation. Followings are results obtained from this research. After cultivate the green manure crops, microbial flora in soil was diversified, organic matter and total-N content increased, but salt content decreased. The highest output obtained from the wheat cultivated area among various green manure corps. Growth of shoot and root of two years old ginseng increased significantly at the green manure crop cultivated area. Specially, the wheat cultivated area was the most effective in growth. Also, the rate of the leaf discoloration at the aerial part and the rusty root at the root was the least at the wheat cultivation area. Meanwhile, the ginsenoside content was the most at the wheat cultivation area. Thus, the reserved ginseng cultivation land could be managed by cultivating wheat for effective ginseng growth.
        43.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        This study was performed to enhance contents of low molecular ginsenoside using steaming and fermentationprocess in low quality fresh ginseng. For increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng, a steam-ing process was applied at 90℃ for 12hr which was followed by fermentation process at Lactobacillus rhamnosus HK-9incubated at 36℃ for 72h. The contents of ginsenoside Rg1, Rb1, Rc, Re and Rd were decreased with the steaming associ-ated with fermentation process but ginsenoside Rg2, Rg3, Rh2 and CK increased after process. It was found that under thesteaming associated with fermentation process, low molecule ginsenosides such as Rg2, Rg3, Rh2 and CK were increased as3.231㎎/g, 2.585㎎/g and 1.955m/g and 2.478㎎/g, respectively. In addition, concentration of benzo[α]pyrene in extracts ofthe low quality fresh ginseng treated by the complex process was 0.11ppm but it was 0.22ppm when it was treated with thesteaming process. This result could be caused by that the most efficiently breakdown of 1,2-glucoside and 1,4-glucoside link-age to backbone of ginsenosides by steaming associated with fermentation process. This results indicate that steaming pro-cess and fermenration process can increase in contents of Rg2, Rg3, Rh2 and CK in low quality fresh ginseng.
        54.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to select optimal shade materials among four-layered polyethylene (PE) net (FLPN), aluminium-coated PE sheet (APSS), and blue PE sheet (BPSS) in condition of paddy field cultivated 6-year-old ginseng. The order of light-penetrated ratio and air temperature by shade materials was BPSS 〉 APSS 〉 FLPN. Light-penetrated ratio of BPSS before two fold shade was more 3 times and 2 times than that of FLPN and APSS, respectively. Air temperature of BPSS was also higher 1.6℃ and 1.4℃ than that of FLPN and APSS, respectively. BPSS showed good cultural environment because all of light-penetrated ratio and air temperature were become higher in spring and fall season but lower in summer season by additional shade with two-layered PE net. Survived-leaf ratio was highest in BPSS and lowest in FLPN causing a little water leak on a rainy day. Rusty-root ratio was also highest in FLPN because soil moisture content was increased by water leak. The order of root yield was BPSS 〉 APSS 〉 FLPN, and the cause of highest yield in BPSS was higher light-penetrated ratio during spring and fall season, higher survived-leaf ratio, and lower rusty-root ratio than that of APSS and FLPN. BPSS showed highest total ginsenoside content because of high light-penetrated ratio, blue light effect, and the difference in dry matter partitioning ratio such as low taproot ratio, and high lateral root ratio.
        55.
        2013.02 KCI 등재 서비스 종료(열람 제한)
        FPS (farnesyl diphosphate synthase) plays an essential role in organ development in plants. However, FPS has not previously been identified as a key regulatory enzyme in triterpene biosynthesis. In order to investigate the effect of FPS on ginsenosides biosynthesis, we over-expressed FPS of Centella asiatica (CaFPS) in Panax giseng adventitious roots. PCR analysis showed the integrations of the CaFPS and hygromycin phosphotransferase genes and we ultimately selected three lines. The result of Southern blot analysis demonstrated the introduction of the CaFPS gene into genome of ginseng. In addition, the results of RT-PCR analysis revealed that CaFPS gene overexpression induced an accumulation of its transcription in the ginseng adventitious roots. To determine whether or not the overexpression of the CaFPS gene contributes to the downstream gene expression associated with triterpene biosynthesis, the level of mRNAs was analyzed by real-time PCR. The result showed that no differences were detected in any expression of all genes. To determine quantitatively the content of ginsenosides in transgenic ginseng adventitious roots, HPLC analysis was conducted. The content of total 7 ginsenosides was increased to 1.8, 1.4, and 1.7 times than that of the controls, respectively. This indicated that the overexpression of CaFPS in ginseng adventitious roots causes an increase in ginsenoside content, although down stream genes of FPS gene were suppressed by CaFPS overexpression.
        56.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at 90℃ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[α]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.
        57.
        2012.06 KCI 등재 서비스 종료(열람 제한)
        To develop the practical cultivation for paddy field, we investigated the properties of paddy soil, growth characteristics and ginsenoside content of 6-year-old ginseng, Cheonpung variety between poor drainage class (PDC) and imperfect drainage class (IDC). Groundwater level in PDC showed monthly small changes of 20~30 cm, while IDC showed monthly great changes of 28~71 cm depending on rainfall. Soil moisture content in PDC and IDC was 17.2%, 22.5%, respectively. Air temperature in IDC was lower than 0.3℃, while soil temperature was higher than 0.8℃ compare to PDC, respectively. Main soil color of PDC was grayish olive, while IDC was brownish olive. PDC showed yellowish mottles only at underground of 20~40 cm, while IDC showed that at underground of 30~90 cm. IDC showed lower pH, EC, potassium, calcium and magnesium content, but higher organic matter, phosphate, and iron content than that of PDC, respectively. All of EC, organic matter, potassium, calcium, and magnesium content were decreased, but iron content was increased at the subsoil layers of PDC. All of EC, organic matter, phosphorus, and potassium content were decreased, but calcium and magnesium content were increased at the subsoil layers of IDC. Root yield in IDC was more increased by 33% than that of PDC. The moisture content and rusty ratio of ginseng root in IDC were lower than that of PDC. Ginsenoside content in IDC was higher than that of PDC because the ratio of lateral and fine root showing relatively high content of ginsenoside was higher in IDC than that of PDC.
        58.
        2012.04 KCI 등재 서비스 종료(열람 제한)
        This study compared the contents of low molecular ginsenoside according to fermentation process in low grade fresh ginseng. Low grade fresh ginseng was directly inoculated with a 24 h seed culture of Bifidobacterium Longum B6., Lactobacillus casei., and incubated at 36℃ for 72 h. Bifidobacterium Longum B6 was specifically was found to show the best growth on 3,255×106 CFU/ml after 48 h of fermentation. The content of ginsenoside Rb1, Re and Rd were decreased with the fermentation but ginsenoside Rh2 and Rg2 increased after fermentation process. In the case of low molecular ginsenoside conversion yields were 56.07% of Rh2, 12.03% of Rg3 and 77.11% of Rg2, respectively. In addition, compound-K was irregular conversion yield as long as 72 h of fermentation. This results indicate that fermentation process could increase the low molecular ginsenoside in low grade fresh ginseng.
        59.
        2012.04 KCI 등재 서비스 종료(열람 제한)
        An important factor in the production of organic ginseng is the control of Alternaria blight and anthracnose, which mostly affect the leaves in the summer. We compared the effects of a lime-bordeaux mixture (LBM) and agricultural chemicals on the growth characteristics and ginsenoside content in 4-year-old ginseng plants when they were sprayed at 15-day intervals from mid-June to the end of September. The increases in leaf length, and survive-leaf ratio in plants sprayed with LBM were greater than the increases of the control plants, but less than those of agricultural chemicals treatment. The root weight per plant in the plants sprayed with LBM increased more distinctly than that in the control plants, while it was significantly lower than that in plants sprayed with agricultural chemicals. The root yield in plants sprayed with LBM increased by 21% compared to the root yield in the control plants, but decreased by 7% compared to that in plants sprayed with agricultural chemicals because of the decreases in leaf area and survive-leaf ratio. Spraying of LBM had a significant effect on the ginsenoside contents. The total ginsenoside content was highest in the control plants and lowest in the plants sprayed with agricultural chemicals and total ginsenoside contents was great relative to survive-leaf ratio and root weight.
        60.
        2012.02 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate changes in composition of ginsenosides and color of processed ginsengs prepared by different steaming-drying times. Processed ginsengs were prepared from white ginseng with skin by 9-time repeated steaming at 96℃ for 3 hours and followed by hot air-drying at 50℃ for 24 hours. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powders. Crude saponin contents and ginsenosides compositions in processed ginsengs prepared by different steaming-drying times were investigated using the HPLC method, respecively. Crude saponin contents according to increasing steaming-drying times decreased in some degree. In the case of major ginsenosides, the contents of Rb1, Rb2, Rc, Rd, Rf, Re, RG1, Re were decreased with increase in steamimg times, but those of Rh1, Rg3, Rk1 were increased after especially 3 times of steaming processes. Interestingly, in black ginseng were prepared by 9 times steaming processes, the content of ginsenoside Rg3 was 8.20 mg/g, approximately 18 times higher than that (0.46 mg/g) in red ginseng. In addition, the ratio of the protopanaxadiol group and protopanaxatiol group (PD/PT) were increased from 1.9 to 8.4 due to increasing times of steamming process.
        1 2 3 4