검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 62

        41.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        Concentrations of hydrogen sulfide in ambient air have been measured from January 2014 to June 2016 in a coastal area near the Ulsan National Industrial Complex. The measurement sites were 1 km, 2.6 km, 5.6 km, and 20 km away from a kraft pulp mill, which is located at the most southern edge of the complex. Concentrations above 0.4 ppb were monitored every 5 min and the highest concentration of the day was determined. From a total of 775 measurement days, hydrogen sulfide concentrations > 20 ppb were recorded on 36 and 38 days at the measurement site closest to the mill and the residential area 2.6 km away from the mill, respectively. At the site farthest from the mill, the concentrations were always 20 ppb lower than the malodor regulation for the residential area but sometimes higher than the odor recognition threshold for hydrogen sulfide. Although several emission sources of hydrogen sulfide have been published in the Pollutant Release and Transfer Register of Korea, the kraft pulp mill is considered to be the biggest contributor of atmospheric hydrogen sulfide in the southern coastal area of Ulsan.
        42.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        The purpose of the present study is to examine characteristics of hydrogen sulfide adsorption using iron-activated carbon composite adsorbents prepared by ferric nitrate and ferric chloride. Prepared adsorbents were discussed on H2S adsorption capacity. Also, adsorbents were analyzed by surface analysis methods for illustrating the physical characteristics of H2S adsorption. The breakthrough tests of H2S were conducted at 3,333 ppm of inlet concentration, demonstrating that the adsorption capacity for iron-activated carbon composite adsorbents was in order of FC_AC (Ferric chloride_Activated carbon), FN_AC (Ferric nitrate_Activated carbon), FC (Ferric chloride) and FN (Ferric nitrate). Adsorption capacity of FC was 0.06 g/g, whereas FC_AC showed the highest capacity of 0.171 g/g. All adsorbents exhibited the amorphous type in physical appearance based on XRD analysis and high Fe content based on EDS analysis. The surface areas of composites were increased by adding activated carbon, exhibiting better adsorption capacity.
        43.
        2014.11 서비스 종료(열람 제한)
        우리나라에서 배출된 음식물쓰레기가 연간 420만톤 발생하고 있고, 음식물쓰레기의 배출량은 전체 배출량의 65%를 차지하고 있어, 이 분야의 폐기물 배출이 국내의 폐기물 분야에 크게 기여하고 있는 것으로 나타났다. 이러한 혐기발효에서 발생하는 바이오가스는 전기를 생산하는 경우보다 연료로 사용할 경우에 환경성과 경제성은 더욱 증가하는 것으로 평가되고 있다. 이러한 바이오가스 중에 메탄과 이산화탄소 발생량 보다 황화수소 발생량은 소량이지만 금속의 부식성과 장비의 유지관리를 어렵게 하기 때문에 유해가스인 황화수소를 분리 제거하는 것이 메탄의 분리정제에 앞서 중요한 과제이다. 이를 위해 적용할 수 있는 분리기술은 크게 흡착법, 흡수법, 생물학적 제거법 등이 있는 데 사용용도, 재이용 및 경제성 등을 고려하여 흡수법의 기술적인 방법을 선택하는 것으로 중요하다. 바이오가스 내 황화수소를 제거하기 위해서 주로 사용하는 방법으로 금속철을 이용한 흡착법이나 흡수법 등이 주로 이용하여 왔다. 황화수소가스를 제거하기 위하여 화학흡수제인 무기화합물인 철화합물을 사용한 사례는 많치만 철킬레이트(Fe-EDTA)를 이용하는 처리방법 등은 국내에서는 석유화학공정 및 제지공장 등의 화학처리공정 및 악취가스처리를 위해 황화수소를 제거하기 위해 제한적으로 사용되어 왔다. 혐기발효를 위해 생성되는 바이오가스 내 황화수소를 흡수반응에 의해 철킬레이트 화합물을 본격적으로 적용된 예는 외국에서는 있지만 국내에서는 적었다. 만일 황화수소를 철킬레이트의 화학적인 흡수반응을 이용하면 황으로의 침전은 안전하고도 쉽게 분리가 가능하며 화학적으로도 안정적이고 인체에 무해하며 부식성이 없다. 또한 사용 후 재이용이 가능하고 고효율의 분리정제가 가능하기 때문에 바이오가스 분리를 위해 최적의 조건에서 분리정제를 위한 방법을 고려할 수 있다. 그러므로 EDTA에 의한 철킬레이트 화합물이 바이오가스 성분으로부터 황화수소가 쉽게 산화되면서 적절한 공정조건에 의해 여과나 침전방법에 의해 제거가 가능하다.
        44.
        2014.11 서비스 종료(열람 제한)
        본 연구에서는 혐기성 소화가스(바이오가스)에 포함되어 있는 황화수소를 제거하기 위하여 연간 100만톤씩 발생하고 있는 정수슬러지를 사용하여 최적의 흡착제를 제조하고 제조된 흡착제의 흡착성능을 확인하고자 하였다. A시 산업단지에서 발생되는 식음료 슬러지 및 환입제품을 이용한 혐기성 소화공정에서 발생되는 바이오가스 중 황화수소를 제거하기 위해 고정층 연속흡착실험을 90일 동안 수행한 결과, 입상형 일반야자계 활성탄(GAC)의 경우 단위 흡착제 kg당 황화수소 제거량은 164.30g H2S/kg GAC으로 나타났다. 한편 정수슬러지를 활용하여 개발된 흡착제(DES-1000)를 이용한 경우, 단위 흡착제 kg당 황화수소 제거량은 180.18g H2S/kg DES-1000로 나타난 입상활성탄보다 흡착능이 우수함을 알 수 있다.
        45.
        2014.11 서비스 종료(열람 제한)
        매립가스는 유기물의 소화로 발생되는 복합성 가스이며 주성분인 메탄(CH4), 이산화탄소(CO2) 이외에 황화수소(H2S), 암모니아(NH3), 할로겐 탄화수소, 휘발성유기규소화합물(VMSs)을 포함한다. 매립가스의 구성물질 중 황화수소는 주요 악취물질로 반응성이강하며 휘발성유기규소화합물은 매립가스 내 불순물로 장치 부식의 원인이 될 수 있다. 따라서 매립가스의 효율적인 자원화를 위해서는 매립가스 내 황화수소 및 휘발성유기규소화합물의 전처리가 필요하다. 본 연구는 황화수소와 휘발성유기규소화합물의 전처리공정으로서 흡착공정을 개발하고, 우선 황산철용액으로 개질된 활성탄을 제조하고 개질 활성탄의 흡착특성을 평가하고자 하였다. 실험에 사용된 흡착제는 식물계 활성탄에 황산철(FeSO4・7H2O)용액으로 첨착하였다. 흡착 방법으로는 흡착제가 채워진 유리재질의 흡착관에(∅10×150 mm) 황화수소 및 휘발성유기규소화합물 중 D4를 질소(99.999%)와 함께 0.3 L/min으로 유입시켜 유출농도가 유입농도의 5%로 배출 될 때를 파과점으로 하여 측정하였다. 황화수소는 초기농도 1%에서 질소와 혼합하여 3,333 ppm으로 유입되었으며, 휘발성유기규소화합물인 D4는 650 ppm으로 유입되었다. 황화수소는 10 ppm까지 황화수소 센서를 이용하여 측정하였고 이후 GC-PFPD로 분석하였으며 휘발성유기규소화합물인 D4는 GC-FID를 이용하여 분석하였다. 개질된 활성탄의 비표면적은 1205.4 m²g-1로 비개질 활성탄의 비표면적인 1111.3 m²g-1 보다 큰 값을 보여주었다. 또한, 주사형 전자현미경 분석을 통해 입경크기 및 표면기공을 확인한 결과 개질된 활성탄의 표면기공이 1 μm 이하부터 8 μm 까지 다양하게 분포되어 있었다. 개질된 활성탄의 황화수소 및 휘발성유기규소화합물의 흡착능은 각각 0.256 g/g, 0.413 g/g으로 비개질 활성탄의 흡착능인 0.023 g/g에 비해 매우 높은 흡착능을 보여주었다. 개질된 활성탄의 첨착된 철에 의한 화학흡착과 제조과정에서 형성된 활성탄 표면의 관능기가 황화수소 및 휘발성유기규소화합물의 흡착에 영향을 주는 것을 판단된다.
        46.
        2013.11 서비스 종료(열람 제한)
        황화수소는 환경기초시설뿐만 아니라 산업현장에서 발생되는 암모니아와 함께 대표적인 악취물질중의 하나로 알려져 있으며 사람에게 불쾌감을 주지 않을 정도로 일반대기중의 농도를 규제하려면 적어도 3 ppm 이하의 농도가 되어야 한다. 일반적으로 황화수소를 제거하기 위해서 금속산화물을 흡착제로 이용하는 것으로 많이 알려져 있는데 구리, 아연, 망간 등의 금속산화물을 이용하여 만든 황화수소 제거 흡착제에 대한 연구가 수행되었으며 특히 산화철을 이용한 흡착제가 황화수소 제거성능과 재생성능이 우수한 것으로 알려져 있다. 흡착제 제조과정을 Fig. 1에 나타내었다. 건조시킨 레드머드 분말에 태성건설(주)에서 제조, 시판되고 있는 DEN-01 AlPO₄계 제올라이트 분말을 결합제 및 흡착효율 향상을 위해 무게비로 약 30% 혼합하여 증류수를 첨가하여 반죽을 하고 소형 성형기를 이용하여 ∮4 mm, 길이 5 ~ 10 mm의 펠렛으로 제조하였다. DEN-01 AlPO₄계 제올라이트 분말은 정수슬러지의 무기질성분 중 SiO₂, Al₂O₃가 약 50 ~ 60% 정도 함유되어 있는 점을 감안하여 인공 제올라이트로 전환한 것으로 본 연구에서 기존 문제점을 보완하고자 Red Mud를 활용해 입상형 흡착제를 제조하였는데 본 연구결과 황화수소의 파과시점을 초기 농도 10% 검출되었을때로 보고 제조된 흡착제는 4.7 g H₂S/흡착제 g으로 나타남으로서 수입에 의존하는 펠렛형 활성탄을 대체할 수 있는 잠재력을 갖고 있는 것으로 판단되며 이에 악취관리법에서 정하는 악취종류별 제거능을 평가하는 추가실험이 필요할 것으로 판단된다.
        47.
        2013.11 서비스 종료(열람 제한)
        철 킬레이트 화합물을 이용한 친환경 황화수소(H2S) 제거공정은 1960년 영국의 Hartley에 의해 처음으로 소개 되었다. 철 킬레이트 화합물을 이용한 액상 촉매산화법은 황화물 기체의 물에 대한 용해도와 철 킬레이트 화합물의 산화환원 원리를 이용한 방법으로 상온상압 운전이 가능하며, 폐수 및 2차 오염이 없고, 운전 및 설비 비용이 저렴하여 최근에 혐기소화 발생 바이오가스에 응용되고 있다. 철 킬레이트 화합물의 황화수소 제거 메커니즘은 다음과 같다. H2S (g) = H2S (aq.) : Henry's law H2S (aq.) + 2Fe(III)-Chelates = 2Fe(II)-Chelates + S(s) + H+. O2 (g) = O2 (aq.) 4Fe(II)-Chelates + 2H2O+ O2(aq.) = 4Fe(III)-Chelates + 4OH-. 본 연구에서는 상금속 킬레이트 촉매를 이용한 황화수소의 제거에서 가스는 액상 킬레이트용액에 용해되고 용해된 황화수소는 산소와 반응하여 물로 전환된다. 특히 수용액 중 황이온은 산소에 의해 고체황으로 침전되지만 일반적으로 산화작용을 촉진시키기 위하여 금속촉매를 사용하는 경우가 있다. 황화수소제거에서 주로 이용되는 경우는 철염과 킬레이트 EDTA를 사용하며 FeSO4-EDTA촉매를 개발하여 황화수소제거를 위해 흡수탑 공정에 적용하였다. 공정변수별로 철킬레이트 촉매를 이용한 2가나 3가 철을 사용하여 황화수소를 제거하기 위해 철염의 농도, 온도 그리고 pH 등을 달리하여 제거효율을 측정하여 보았다.
        48.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        Several experiments have done to investigate the removal of hydrogen sulfide(H2S) synthetic gas from biogas streams by means of chemical absorption and chemical reaction with 0.1 M – 1 M Fe/EDTA solution. The hydrogen sulfide of biogas was bubbled through an gas-lift column with Fe/EDTA resulting in the formation of sulfur particles. Wide range of optimal operating conditions were tested for both Fe/EDTA solution and the biogas, and the optimal ratio of Fe/EDTA concentration for efficient removal of hydrogen sulfide was found. The roles of Fe/EDTA were studied to enhance the removal efficiency of hydrogen sulfide because of oxidizing by Fe+3/EDTA. The motivation of this investigation is first to explore the feasibility of enhancing the toxic gas treatment in the biogas facility. The biogas purification strategy affords many advantages. For instance, the process can be performed under mild environmental conditions and at low temperature, and it removes hydrogen sulfide selectively. The end product of separation is elemental sulfur, which is a stable material that can be easily disposed of with minor potential for further pollution. The process to address over 90% removal efficiency of hydrogen sulfide does offer considerable advantages unrealized.
        49.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        We investigated the effect of temperature and pressure in breakthrough performance of various sorbents for dechlorination and desulfurization. Based on the results obtained during the desulfurization (Fe2O3, Fe3O4, ZnO) and the dechlorination (Na2CO3, NaHCO3, trona) screening tests, ZnO and trona were selected as preferred optimum sorbents. H2S breakthrough time corresponds to an effective capacity of approximately 11 g H2S/100 g of sorbent. Also, HCl breakthrough time corresponds to an effective capacity of approximately 5 g HCl/100 g of sorbent. ZnO and trona at high temperature of around 550oC display high sorption performance and removal efficiency for synthsis gas from waste gasification. Although there is an issue of CO2 recovery in hot gas cleanup technology for desulfurization, we have obtained an interesting new alternative hot gas cleanup system with heat budget merit.
        50.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        Odor from sewage treatment plants have the potential to cause significant annoyance and to impact the amenity. In this study, odor emission characteristics at unit process of 48 sewage treatment facilities in 39 plants were evaluated using composite odor concentration and hydrogen sulfide (H2S) concentration. The values of composite odor concentration (geometry mean) and H2S concentration (median) for sludge treatment processes are higher than those for the other treatment processes. The composite odor concentration and H2S concentration are distributed over a wide area in each process. Composite odor concentration (dilution ratio) was found to have the significant correlation with H2S concentration (p=0.000<0.05). The H2S concentration accounted for 67.1% of composite odor concentration.
        58.
        2001.08 KCI 등재 서비스 종료(열람 제한)
        A packed bed of volcanic rock was used as deodorizing material to remove hydrogen sulfide(H2S) from air in a laboratory-scale column, and was inoculated with Thiobacillus sp. as H2S oxidizer. The effects of volcanic rock particle size distribution on system pressure drop were examined. Various tests have been conducted to evaluate the effect of H2S inlet concentration and EBCT(Empty Bed Contact Time) on H2S elimination. The pressure drop for particles of size range from 5.6 to 10 ㎜ was 14 ㎜H2O/m at a representative gas velocity of 0.25m/s. Biofilter using scoria and Thiobacillus sp. could get the stable removal efficiencies more than 99.9% under H2S inlet concentrations in the range from 30 to 1,100ppm at a constant gas flow rate of 15.2 ℓ/min. H2S removal efficiencies greater than 99% were observed as long as EBCT was longer than 8sec at the 250ppm of H2S inlet concentration. When EBCT was reduced to 5.5 sec, H2S removal efficiency decreased by about 12 percent. The maximum H2S elimination capacity was determined to be 269g-H2S/㎥·hr.
        60.
        1999.02 KCI 등재 서비스 종료(열람 제한)
        Sorbents of calcined limestone and oyster particles having a diameter of about 0.63㎜ were exposed to simulated fuel gases containing 5000ppm H2S for temperatures ranging from 600 to 800℃ in a TGA (Thermalgravimetric analyzer). The reaction between CaO and H2S proceeds via an unreacted shrinking core mechanism. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfde(CaS) formed. The kinetics of the sorption of H2S by CaO is sensitive to the reaction temperature and particle size, and the reaction rate of oyster was faster than the calcined limestone.
        1 2 3 4