This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.
Even though cars have a good effect on modern society, traffic accidents do not. There are traffic laws that define the regulations and aim to reduce accidents from happening; nevertheless, it is hard to determine all accident causes such as road and traffic conditions, and human related factors. If a traffic accident occurs, the traffic law classifies it as ‘Negligence of Safe Driving’ for cases that are not defined by specific regulations. Meanwhile, as Korea is already growing rapidly elderly population with more than 65 years, so are the number of traffic accidents caused by this group. Therefore, we studied predictive and comparative analysis of the number of traffic accidents caused by ‘Negligence of Safe Driving’ by dividing it into two groups : All-ages and Elderly. In this paper, we used empirical monthly data from 2007 to 2015 collected by TAAS (Traffic Accident Analysis System), identified the most suitable ARIMA forecasting model by using the four steps of the Box-Jenkins method : Identification, Estimation, Diagnostics, Forecasting. The results of this study indicate that ARIMA (1, 1, 0)(0, 1, 1)12 is the most suitable forecasting model in the group of All-ages; and ARIMA (0, 1, 1)(0, 1, 1)12 is the most suitable in the group of Elderly. Then, with this fitted model, we forecasted the number of traffic accidents for 2 years of both groups. There is no large fluctuation in the group of All-ages, but the group of Elderly shows a gradual increase trend. Finally, we compared two groups in terms of the forecast, suggested a countermeasure plan to reduce traffic accidents for both groups
이 논문은 국내 한육우 사육두수를 시계열 모형인 ARIMA 모형을 이용하여 추정하였다. 소의 생리학적 특성을 반영하기 위하여 한육우 사육두수를 총 여섯 개의 범주(4개의 도축률과 2개의 출생률)로 나누었다. 이 여섯 가지 범주에 대해 ARIMA 모형을 적용하여 Box-Jenkins 절차에 따라 그 값들을 추정하고 예측하였다. 큰암소도축률과 큰수소도축률은 단위근을 갖는 불안정시계열로 나타나 차분하여 안정화시키고 나머지 4개의 변수들은 안정시계열로 나타나 그대로 모형의 식별, 추정 그리고 예측에 사용하였다. 분석결과, 한육우 사육두수는 2012년을 최고점으로 점점 감소하다가 2018년을 최저점으로 다시 증가할 것 으로 분석되었다.
In this paper, an effort is exerted to the problem of short-term domestic demand forecasting of mineral water. The seasonal ARIMA models are considered in model building and in making the forecast. As it turned out, the model fits well into the given time-series data in so far as modeling procedures are relevant. A fitted model as well as modeling procedure is presented in some detail.
세계적인 장기경기침체 속에서 보다 정확한 물동량 예측은 항만정책 수행에 중요하다. 따라서, 본 연구에서는 부산항 컨테이너 물 동량(수출입화물과 환적화물)을 단변량 모형인 ARIMA 뿐만 아니라 인과관계가 있을 것으로 예상되는 경제규모(한국, 중국, 미국의 국내총생산), 금리수준 그리고 경기변동을 고려한 벡터자기회귀모형과 벡터오차수정모형을 활용하여 추정하고 비교하였다. 측정자료는 2014년 1월부터 2019년 8월까지 월별 부산항 컨테이너 물동량이다. 분석결과에 의하면, 수출입물동량 시계열은 비교적 안정적(stationary)이어서 VAR에 의해 추정하였고 환적화물은 불안정적(non-stationary)하지만, 경제규모, 금리 및 경기변동과 공적분(장기적인 균형관계)를 띠고 있어 VEC모형으로 추정하였다. 추정결과, 안정적인 수출입화물 추정에서는 단변량 모형인 ARIMA가 우수하고 추세가 있는 환적화물은 다변량모형인 VEC모형이 보다 예측력이 우수한 것으로 나타나고 있다. 특히 수출입화물은 우리나라 경제규모와 관련이 있고, 환적화물은 중국과 미국 경제규모와 밀접한 관련이 있다. 또한 중국 경제규모가 미국에 비하여 더 밀접하게 나타나고 있어 환적화물 증대전략에 시사점을 주고 있다.
예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.
This study was carried out to develop the stream water quality model for the intaking station of Kongju waterworks in the Keum River system. The monthly water quality(total nitrogen and total phosphorus) with periodicity and trend were forecasted by multiplicative ARIMA models and then the applicability of the models was tested based on 7 years of the historical monthly water quality data at Kongju intaking site. The parameter estimation was made with the monthly observed data. The last one year data was used to compare the forecasted water quality by ARIMA model with the observed one. The models are ARIMA(2,0,0)×(0,1,1)_12 for total nitrogen, ARIMA(0,1,1)×(0,1,1)_12 for total phosphorus. The forecasting results showed a good agreement with the observed data. It is implying the applicability of multiplicative ARIMA model for forecasting monthly water quality at the Kongju site.