검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to provide preliminary information to grasp how many particulate matter (PM) which is a problem in urban area are absorbed and removed by street trees. The morphology, size and element composition of PM deposited on leaves of five street trees (Quercus glauca, Q. myrsinaefolia, Ginkgo biloba, Prunus serrulata var. spontanea, and Pinus densiflora) in Jinju city, South Korea were analyzed. The size of PM was classified into three as PM2.5 (0.2~2.5 μm), PM10 (2.5~10 μm), and PM100 (10~100 μm). The element composition of PM deposited on the leaves at the study sites mainly comprised of O, C, N, Si, and Al. The PM at industrial area and university campus was irregular and spherical shape, respectively. Total PM accumulated on the leaf surfaces of P. densiflora was 71.65 μg/cm² at industrial area and 40.66 μg/cm² at university campus, which was significantly higher than the other species. The ratio of PM2.5, PM10, and PM100 deposited on the leaves was 9.2%, 37.0%, 53.8% at industrial area and 15.8%, 27.1%, 57.1% at university campus, respectively. P. densiflora deposited the most PM2.5, PM10 and PM100 in leaf wax at the study sites, which was significantly higher than the other species.
        2.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        In this paper, the EM wave absorbers were designed and fabricated for X -band sensors using Carbon of dielectric material with CPE. The complex relative permittivity of samples is calculated by using measurement results of S-parameter. We simulated the double-layered type EM wave absorber with broad bandwidth using the measured complex relative permittivity by changing the thickness and layer, which was fabricated based on the simulated design The fabricated EM wave absorber consists of 1 mm first layer sheet facing metal with Carbon composition ratio 70 vol. % and 1.5 mm second layer sheet with Carbon composition ratio 60 vol. %. The measured results showed a good agreement to the simulated ones. It is found toot the optimized absorption ability of double-layered type EM wave absorber with thickness of 2.5 mm is higher than 10 dB from 7.8 GHz to 13.3 GHz.