검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although airborne wear particles (AWPs) generated from wheel-rail contacts are the major source of particulate matter (PM) in subway systems, studies on reducing the generation of such particles in order to enhance air quality are extremely rare. Therefore, this study investigated the effect of applying water-lubricant (applying tap water) on improving air quality by reducing the mass concentration (MC) of AWPs from wheel-rail contacts at a train velocity of 73 km/h using a twin-disk rig. An optical particle sizer was used to measure the MC of particles with the diameter range of 0.3 μm~10 μm. The results showed that the generation trends regarding PM1, PM2.5, and PM10 were different for dry and water-lubricated conditions: all three PMs showed an increasing-decreasing trend with slip rate under dry conditions; however, they were almost constant with slip rate under water-lubricated conditions. The particle size distributions were also different for dry and water-lubricated conditions: the peak occurred in multi-modal with the largest peak at approximately 6 μm in diameter under dry conditions; whereas, the peak occurred in bi-modal with the largest peak at approximately 0.9 μm in diameter under water-lubricated conditions. In addition, MCs were mostly smaller under water-lubricated conditions than dry conditions except at approximately 0.9 μm in diameter. Applying water significantly decreased PM1~2.5 and PM2.5~10 by more than 95%. This caused a decrease in PM2.5 and PM10 by 48.1% and 78.5%, respectively. On the other hand, applying water increased PM0.3~1 (i.e., PM1) by 52.8%, possibly owing to the effect of water vapor and mineral crystals from tap water. Overall, these findings indicate that water-lubrication can improve air quality in subway systems by reducing the MC of APWs generated from wheel-rail contacts. This study may provide a reference for future studies seeking to improve air quality in subway systems by reducing AWPs generated from wheel-rail contacts by applying lubricants.
        4,000원