OBJECTIVES : The objective of this research is to determine the moisture resistance of the freeze-thaw process occurring in low-noise porous pavement using either hydrated-lime or anti-freezing agent. Various additives were applied to low-noise porous asphalt, which is actively paved in South Korea, to overcome its disadvantages. Moreover, the optimum contents of hydrated-lime and anti-freezing agent and behavior properties of low-noise porous asphalt layer are determined using dynamic moduli via the freeze-thaw test. METHODS: The low-noise porous asphalt mixtures were made using gyratory compacters to investigate its properties with either hydratedlime or anti-freezing agent. To determine the dynamic moduli of each mixture, impact resonance test was conducted. The applied standard for the freeze-thaw test of asphalt mixture is ASTM D 6857. The freeze-thaw and impact resonance tests were performed twice at each stage. The behavior properties were defined using finite element method, which was performed using the dynamic modulus data obtained from the freezethaw test and resonance frequencies obtained from non-destructive impact test. RESULTS: The results show that the coherence and strength of the low-noise porous asphalt mixture decreased continuously with the increase in the temperature of the mixture. The dynamic modulus of the normal low-noise porous asphalt mixture dramatically decreased after one cycle of freezing and thawing stages, which is more than that of other mixtures containing additives. The damage rate was higher when the freeze-thaw test was repeated. CONCLUSIONS : From the root mean squared error (RMSE) and mean percentage error (MPE) analyses, the addition rates of 1.5% hydrated-lime and 0.5% anti-freezing agent resulted in the strongest mixture having the highest moisture resistance compared to other specimens with each additive in 1 cycle freeze-thaw test. Moreover, the freeze-thaw resistance significantly improved when a hydrated-lime content of 0.5% was applied for the two cycles of the freeze-thaw test. Hence, the optimum contents of both hydrated-lime and anti-freezing agent are 0.5%.
PURPOSES : Nowadays, cavity phenomena occur increasingly in pavement layers of downtown areas. This leads to an increment in the number of potholes, sinkholes, and other failure on the road. A loss of earth and sand from the pavement plays a key role in the occurrence of cavities, and, hence, a structural-performance evaluation of the pavement is essential. METHODS: The structural performance was evaluated via finite-element analysis using KPRP and KICTPAVE. KPRP was developed in order to formulate a Korean pavement design guide, which is based on a mechanical-empirical pavement design guide (M-EPDG). RESULTS: Installation of the anti-freezing layer yielded a fatigue crack, permanent deformation, and international roughness index (IRI) of 13%, 0.7 cm, and 3.0 m/km, respectively, as determined from the performance analysis conducted via KPRP. These values satisfy the design standards (fatigue crack: 20%, permanent deformation: 1.3 cm, IRI: 3.5 m/km). The results of FEM, using KICTPAVE, are shown in Figures 8~12 and Tables 3~5. CONCLUSIONS: The results of the performance analysis (conducted via KPRP) satisfy the design standards, even if the thickness of the anti-freezing layer is not considered. The corresponding values (i.e., 13%, 0.7 cm, and 3.0 m/km) are obtained for all conditions under which this layer is applied. Furthermore, the stress and strain on the interlayer between the sub-grade and the anti-freezing layer decrease gradually with increasing thickness of the anti-freezing layer. In contrast, the strain on the interlayer between the sub-base and the anti-freezing layer increases gradually with this increase in thickness.
In this study, the heat flow characteristics of natural convection was theoretically analyzed with time by changing various locations of heat trace with tube surface about enclosed circular tube by applying nominal tube diameter 90 mm of KS D 3507. Before carrying out CFD (Computational Fluid Dynamics) analysis, it is presumed that the boundary condition is the tube’s inside and outside fluid temperature of 273 °K, the tube surface heat flux according to the heat trace location of 16 W/m. The result confirmed that water of inside tube is occurred natural convection caused by density difference depending on temperature profile. Additionally, in case of heat trace location, the heat transfer and flow characteristics showed clearly that two-heat trace location =135° and 180° was more favorable distribution than one-heat trace appropriate location =135°.
현재 도로포장 설계법에 따르면, 동상방지층의 두께는 지역별 온도조건에 따라 결정되는 동결깊이에 의해 결정되며 동상방지층의 지지력은 설계에서 고려되지 않고 있다. 동상방지층을 도로포장체에서 구조층으로 고려할 경우에는 기존 도로포장층의 두께를 감소시킬 수 있으며 보다 경제적인 도로 포장단면을 구성할 수 있다. 본 연구에서는 동상방지층의 지지력을 평가하기 위한 통계적 모형을 개발하였다. 동상방지층의 구조적 역할을 규명하고 동상방지층 구조적 평가 모형 개발을 위하여 2m 이하 저성토부, 절토부 및 절성경계부 등을 구분하여 포장 하부층에서 Falling Weight Deflectormeter(FWD) 시험을 계절별로 수행하였다. 본 시험은 동방방지층의 유무에 따른 지지력 차이를 규명하기 위하여 동방방지층이 있는 구간과 없는 구간으로 구분하여 수행하였다. 본 시험결과, 동상방지층이 설치된 구간에서의 FWD 처짐량이 동상방지층 미설치 구간에 비해 0.4~82.6% 작게 측정되어 동상방지층이 포장체에서 지지력을 검증하였다. 다양한 FWD 처짐지수와 동상방지층 두께와의 상관관계를 조사한 결과, 보조기층 파손지수의 차이값(δBDI)과 동상방지층 두께와의 상관도가 가장 높았다. 본 논문에서는 δBDI값을 선형혼합효과 모형에 적용하여 동상방지층을 구조적으로 평가할 수 있는 모형을 개발하였다.
도로는 다양한 재료와 단면으로 구성된 구조물이기 때문에 계절적 및 재료 물성특성 뿐만 아니라 포장체 각 층의 구조적 적정성 또는 지지력 정도를 파악하는 것이 무엇보다 중요하다. 현재, 기존 동상방지층 설계법에 따르면, 동상방지층은 포장체의 구조적 적정성과는 무관하게 온도조건에 따른 동결깊이에 따라 일률적으로 결정되고 있다. 이러한 동결깊이를 포장구조설계에 적용하다 보니 포장 설계의 부실 내지는 과다설계의 우려가 있다. 이에 본 논문은 2m 이하 저성토부, 절토부 및 절성경계부 등을 구분하여 포장 하부층에서 동상방지층의 구조적 역할을 규명하기 위하여 Falling Weight Deflectormeter(FWD) 시험을 수행하였다. 전국 10개 현장에 대하여 보조기층면에서 FWD 시험을 수행하였다. 각각의 단면은 동방방지층이 있는 구간과 없는 구간으로 구분하여 실험을 수행하였다. 이번 현장 실험을 통하여 동상방지층이 있는 경우가 없는 경우에 비해 처짐량이 작게 측정되어 동상방지층이 포장체에서 구조적 역할을 담당하는 것을 확인 할 수 있었다. 특히 절토부에서 동상방지층이 있는 경우에 처짐량 값이 약 15~55% 정도 감소하며, 절성경계부에서 동상방지층이 있는 경우에 처짐량 값이 약 11~64%, 저성토부의 경우 약 2~38%정도 감소하는 것으로 나타났다. SCI를 이용하여 분석한 결과, 동상방지층의 두께가 전체 포장체의 구조적인 능력에 약 24% 차지하는 것으로 나타났다. 피로수명은 동상방지층이 있는 구간이 없는 구간에 비해 약 2배 높은 결과를 보여 피로균열 저항성을 증진시키는 것으로 나타났다. 이것은 동상방지층이 포장체에서 구조적인 역할을 한다는 의미이다.
The snow melting system by electric heating wires which is adopted in this research is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow accumulated on it. The electric heating wires are buried under paved road at a certain depth and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, installation place and each country applying the system. A main purpose of this study is figuring out the appropriate range of required heat capacity and installation depth and pitch for solving snowdrifts and freezing problems with minimum electric power consumption. This study was performed under the ambient air temperature(-2℃, -5℃), the pitches of the electric heating wires(200 mm, 300 mm), heating value(250 W/m2, 300 W/m2, 350 W/m2).
고속도로 건설 및 유지관리 과정중 발생되는 폐콘크리트를 현장파쇄하여 생산한 재생골재를 도로 포장용 재료로 활용하기 위한 시험시공을 실시하였다. 동상방지층의 경우 재생굵은골재, 스크리닝스 및 모래를 소요입도로 혼합하였을 때 양호한 지지력을 나타내었으며 강도가 약한 모르터가 진동 및 전압에 의해 파쇄됨에 따라 재생골재 2~20mm 통과율이 5~13%정도 증가하였다. 재생골재를 사용한 빈배합 콘크리트의 강도는 천연쇄석에 비하여 71~85% 강도를 나타내었으나 배합강도 57.5kgf/cm2를 크게 상회하였으므로 현장적용에는 문제없음을 확인하였다.