검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        1.
        2023.05 구독 인증기관·개인회원 무료
        A deep geological repository for disposal of high-level radioactive waste (HLW) consists of the canister, buffer material, and natural rock. If radionuclides leak from a disposal container, it can pass through buffer materials and rock, and move into the biosphere. Transport and migration of radionuclides in the rock differently were affected by the fracture type, filling minerals in the fracture, and the chemical and hydraulic properties of the groundwater. In this study, aperture distribution in fractured granite block was investigated by hydraulic test and CFD analysis. The fractured rock block (1 m × 0.6 m × 0.6 m), which is simulated as natural barrier, was prepared from Iksan, Jeollabuk-do. 9 test holes were drilled and packer system was installed to perform hydraulic test at the surface of fracture. 3D model simulated for aperture distribution of rock block was made using results of hydraulic test. And then, CFD analysis was performed to evaluate the co-relation between experiment results and analysis results using FLUENT code.
        2.
        2023.05 구독 인증기관·개인회원 무료
        A disposal research program for HLW has been carried out since 1997 with the aim of establishing the preliminary concept of geological disposal in Korea. The preliminary studies were conducted by conducting manufacture and installation of an in-situ nuclide migration system in KAERI Underground Research Tunnel (KURT). Nuclides could be released from a deep underground disposal facility due to thermal and physicochemical changes into the surrounding environments. Understanding on the migration and retardation processes of nuclides in a fractured rock is very important in the safety assessment for the radioactive waste disposal. In this study, we evaluated fracture filling minerals and aperture distribution (3D map) along the fracture surfaces under the controlled conditions. The fractured granite block which has a single natural fracture of 1 m scale was sampled in a domestic quarry (Iksan), which groundwater had been flowed through. This rock has an interconnected porosity of 0.36 with the specific gravity of 2.57. The experimental set-up with the granite block with dimensions of 100×60×60 (cm). A flow of de-ionized water through the fracture between pairs of boreholes was initiated and the pressure required to maintain a steady flow was measured. In additions, fracture filling minerals were sampled and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, kaolinite, and chlorite including calcite, which are fracture filling minerals. The illite and kaolinite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. For the evaluation of fracture, surface was divided into an imaginary matrix of 20×20 sub-squares as schematically. The calculated results are expressed as a two dimensional contour and a three dimensional surface plot for the aperture distribution in the fracture. The aperture value is distributed between 0.075 and 0.114 mm and the mean aperture value is 0.095 mm. The fracture volume is about 55 ml. Also the 137Cs sorption (batch test) distribution coefficients increased to Kd = 800~860 mL/g in the fractured rock because of the presence of secondary minerals formed by weathering processes, compared to the bedrock (Kd = 750~830 mL/g). These results will be very useful for the evaluation of environmental factor affecting the nuclides migration and retardation.
        3.
        2022.10 구독 인증기관·개인회원 무료
        When the radioactive nuclides are leaked from a deep geological repository by groundwater, the migration path of the nuclides is mostly consisted of rock fractures to the surface biosphere. Thus, assessing the safety of the disposed radioactive wastes depends upon understanding of nuclide migration in the fractured rocks. Fractures in rocks tend to dominate the hydrological characteristics of the dissolved nuclides. To study migration of nuclides in the rock fracture, a granite block of 1 m scale was quarried from the Hwangdeung site. The block has a single natural fracture. The six faces of the rock including fracture gaps were sealed with silicone adhesives to prevent leaking or diffusion of the water. Usually flow in fractured rock is unevenly distributed and most of the water flow occures over a small portion of the fracture zone, that is so called channeling flow. It is caused by uneven distribution of apertures in a fracture field. Flow rate is proportional to the cubic of the aperture. Thus, figuring out aperture distribution in a fracture field is the most important step on the study of the migration of nuclides in the fractured region. The ideal way to figure out the aperture distribution in a fractured rock is to use a non-destructive tool such as X-ray tomagraphe. However, it has a limitation of scale, that is, less than about 30 cm. It is not easy to give a good resolution for this quarried rock of 100×60×60 cm scale. It gives complex and vague images of the fracture. The optimum way to get an aperture distribution in a fractured rock is to drill some boreholes to the fracture and to carry out hydraulic tests. The more number of boreholes gives the more accurate information, but the more disturbance to the fracture field. Thus, it is necessary to optimize between aperture information and disturbing fracture field by selecting a suitable number of boreholes. We drilled nine boreholes from the upper surface of the rock mass just to the fracture without penetrating the fracture. And we carried out dipole tests for the matrix set of 9 boreholes. From each dipole test, an effective average aperture was calculated with the data of flow rate and hydraulic head. Then aperture distribution in the fracture field is calculated with a modified Krigging method. As a result, the aperture is distributed in the range of about 0.03~0.16 mm.
        4.
        2022.10 구독 인증기관·개인회원 무료
        In this study, we evaluated fracture filling minerals and aperture distribution along the fracture surfaces under the controlled conditions. The fractured granite block which has a single natural fracture of 1 m scale was sampled in a domestic quarry (Iksan), which groundwater had been flowed through. This rock has an interconnected porosity of 0.36 with the specific gravity of 2.57. The experimental setup with the granite block with dimensions of 100×60×60 (cm). The fracture is sealed with rock silicone rubbers when it intersects the outer surfaces of the block and the outer surfaces are coated with the silicone to prevent loss of water by evaporation. Nine boreholes were drilled of orthogonal direction at the fracture surface. A flow of de-ionized water through the fracture between pairs of boreholes was initiated and the pressure required to maintain a steady flow was measured. In additions, fracture filling minerals were sampled and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, kaolinite, and chlorite including calcite, which are fracture filling minerals. The illite and kaolinite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. For the evaluation of fracture, surface was divided into an imaginary matrix of 20×20 sub-squares as schematically. The calculated results are expressed as a two dimensional contour and a three dimensional surface plot for the aperture distribution in the fracture. The aperture value is distributed between 0.075 and 0.114 mm and the mean aperture value is 0.082 mm. The fracture volume is about 49 ml. These results will be very useful for the evaluation of environmental factor affecting the nuclides migration and retardation.
        5.
        2022.10 구독 인증기관·개인회원 무료
        The hydro-mechanical behavior of rock mass in natural barriers is a critical factor of interest, and it is mainly determined by the characteristics of the fractures distributed in the rock mass. In particular, the aperture and contact area of the fractures are important parameters directly related to the fluid flow and significantly influence the hydro-mechanical behavior of natural barriers. Therefore, it is necessary to analyze the aperture and contact area of fractures distributed in potential disposal sites to examine the long-term evolution of the natural barriers. This study aims to propose a new technique for analyzing the aperture and contact area using the natural fractures in KURT (KAERI Underground Research Tunnel), an underground research facility for the deep geological disposal of high-level radioactive waste. The proposed technique consists of a matching algorithm for the three-dimensional point cloud of the upper and lower fracture surfaces and a normal deformation algorithm that considers the fracture normal stiffness. In the matching process of upper and lower fracture surfaces, digital images obtained from compression tests with pressure films are used as input data. First, for the primary matching of the upper and lower fracture surfaces, an iterative closest point (ICP) algorithm is applied in which rotation and translation are performed to minimize the distance error. Second, an algorithm for rotation about the x, y, and z axes and translation in the normal direction is applied so that the contact area of the point cloud is as consistent as possible with the pressure film image. Finally, by applying the normal deformation algorithm considering the fracture normal stiffness, the aperture and contact area of the fracture according to the applied normal stress are derived. The applicability of the proposed technique was validated using 12 natural fractures sampled from KURT, and it was confirmed that the initial apertures were derived similarly to the empirical equation proposed in the previous study. Therefore, it was judged that the distribution of apertures and contact areas according to applied normal stress for laboratory-scale fractures could be derived through the technique proposed in this study.
        6.
        2022.05 구독 인증기관·개인회원 무료
        Through constructing statistical fracture network model based on discrete element method, the evolution characteristics of the fracture aperture had been directly simulated and evaluated caused by redistributed stress after the borehole excavation. This study focuses on the size effect of the discrete element method for the analysis of the effective distance of fracture aperture change after the borehole excavation. A two-dimensional trace-type domain with a maximum size of 1.1 m2 was created using a discrete fracture network with stochastic information of KURT. A total of eight domains with different sizes were constructed from the largest domain area to the 0.4 m2 analysis area. The aperture change ratio which can be depending on the domain size was examined. The ratio was investigated by comparing the aperture size before and after the simulation of borehole excavation. In addition, the effective range of aperture changes was analyzed by comparing the re-distribution distance from the center of the borehole. Based on dimensional analysis, input variables (borehole radius, occurrence distance of aperture changes, domain size) were modeled using exponential distribution form. Through the analysis model, two dimensionless variables were derived to investigate the expected distance of the aperture changes and appropriate DFN domain size for simulating bole excavation. As an application example of the 3-inch borehole simulation, the analysis model predicted that the range of aperture changes could occur within a radius of about 0.98 m from the borehole center, and the suitable size of the model had been inferred as about 5 × 5 m for minimizing the domain size effect.
        9.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해상풍은 해양 현상을 이해하고, 지구 온난화에 의한 지구 환경의 변화를 분석하기 위한 필수 요소이다. 전세계 연구 기관은 해상풍을 정확하고 지속적으로 관측하기 위해 산란계(scatterometer)를 개발하여 운영해오고 있으며, 정확도는 풍향이 ±20°, 풍속이 ±2 m s−1 안팎이다. 하지만, 산란계의 해상도는 12.5-25.0 km로, 해안선이 복잡하고 섬이 많은 한반도 근해에서는 자료의 결측이 빈번하게 발생하여 활용도가 감소한다. 그에 반해, Synthetic Aperture Radar (SAR, 합성개구레이더)는 마이크로파를 활용하는 전천후 센서로, 1 km 이하의 고해상도 해상풍이 산출이 가능하여 산란계의 단점 보완이 가능하다. 본 연구에서는 일반적으로 활용되는 SAR 자료 기반 해상풍 산출 알고리즘인 Geophysical Model Function (GMF, 지구 물리 모델 함수)를 밴드별로 분류하여 조사하였다. 상대 풍향, 입사각, 풍속에 따른 후방산 란계수를 L-band Model (LMOD, L 밴드 모델), C-band Model (CMOD, C 밴드 모델), X-band Model (XMOD, X 밴 드 모델)에 적용하여 모의하였고, 각 GMF의 특성을 분석하였다. 이러한 GMF를 SAR 탑재 인공위성 자료에 적용하여 산출한 해상풍의 정확도 검증 연구에 대해 조사하였다. SAR 자료 기반 해상풍의 정확도는 영상 관측 모드, 적용한 GMF의 종류, 정확도 비교 기준 자료, SAR 자료 전처리 방법, 상대 풍향 정보 산출 방법 등에 따라 변하는 것으로 나타났다. 본 연구를 통해 국내 연구자들의 SAR 자료 기반 해상풍 산출 방법에 대한 접근성이 향상되고, 고해상도 해상풍 자료를 활용한 한반도 근해 분석에 이바지할 것으로 기대된다.
        5,100원
        13.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A group of universities have come together with the aim of designing and developing Small Aperture Robotic Telescopes (SmART) for use by students to observe variable stars and transient follow-ups. The group is deliberating on the components of the robotic system; e.g. the telescope, the mount, the back-end camera, control software, and their integration keeping in mind the scientific objectives. The prototype might then be replicated by all the participating universities to provide round the clock observations from sites spread evenly in longitude across the globe. Progress made so far is reported in this paper.
        3,000원
        16.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 선박 내 무선 장비로 활용 가능한 새로운 CPW 급전 UWB 개구면 안테나를 설계하고자 한다. 설계 되어진 안테나는 그라운드면 위에 직사각형을 떼어낸 모형과 버섯형태의 스터브로 구성되어진다. 또한, 버섯형태의 스터브는 간단하고 적은 변수를 갖는 것과 동시에 원하는 UWB 대역에 맞는 가장 적절한 값을 구해내기에 편리하다. 안테나의 작은 홈의 크기는 21.1×8.1mm2이며 두께는 1.5mm에 유전율이 4.3을 가지는 FR-4에 제작되었다. CPW fed 평면 슬롯 안테나는 무선 주파수의 안테나에서 전파를 선택하여 증폭 시킨 후 중간주파수로 변환하는 회로와 함께 광대역, 저비용, 간단히 집적화 시킬 수 있는 이점들을 가지고 있다.
        4,000원
        17.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인공위성 원격탐사를 이용한 선박탐지는 주요 적용 분야 중 하나로, 광역의 환경 감시와 해상보안에 적용되고 있다. 이를 통하여 어장을 포함한 해상교통을 모니터링할 수 있으며, 기름유출 선박을 찾기도 한다. 본 연구에서는, RADARSAT의 합성개구레이더(SAR) 영상을 기반으로 개발한 자동선박탐지기법을 제시하고, 2004년 8월 6일에 얻어진 영상에 적용을 하여 현장 자료와의 비교를 실시하였다. 선박탐지알고리듬은 보정, 랜드마스킹, 필터링, 위치 등록 그리고 식별의 5단계로 구성된다. 울산항을 중심으로 이루어진 위성 촬영시점의 풍속은 최대 0.4m/s이었다. 전장이 68m 이상인 묘박지의 선박을 중심으로 한 선박 탐지 결과는 울산 항만교통정보시스템의 레이더정보와 잘 일치하였다. 바지선과 같은 소형선박의 경우, SAR에 의한 선박 탐지 능력이 육상에 설치된 레이더보다 더 높은 경우도 있었다. 또한, SAR 레이더 산란 단면적(RCS)을 이용하여 선박의 길이와 폭을 계산하였으나, 레이오버와 그림자 효과 때문에 실제 값보다 비교적 높게 추정되었다.
        4,000원
        1 2