Eicosanoids play crucial roles in mediating insect immune responses. PLA2 releases arachidonic acid (AA) from phospholipids (PLs) and AA is usually used for biosynthesis of eicosanoids. However, AA is little (less than 0.05%) detected in insect PLs. In contrast, insect PLs have a lot of other C18 PUFAs (linoleic acid and linolenic acid). A new hypothesis is that AA is synthesized from C18 precursor by subsequent desaturation and elongation reactions. We predicted several fatty acyl desaturases (DESs) from Spodoptera exigua. Some specific DES inhibitors inhibited eicosanoid-mediated immune responses. Subsequent AA precursor analysis suggests that AA may be synthesized from linolenic acid via the omega-6 pathway.
The pattern of wound healing process differs markedly according to the cell types. Gingival wounds heal more rapidly without scar, however dermal wounds show collagen laid down in thick disorganized patterns and keloid formation. This h as b een s uggested t o be d ue t o the presence of d ifferent E C M components a nd c ytokines a s well a s growth factors. The purpose of this study was to examine the differential expression of genes in connection with keloid formation in gingival fibroblasts (hGFs) and dermal fibroblasts (hDFs) in response to inflammation. In this study, we investigated the differences between hGFs and hDFs in the expression and production of cyclooxygenase (COX-2), prostaglandins E2 (PGE2), transforming growth factor (TGF)-β, collagens, matrix metalloproteinases (MMPs), and tissue inhibitors of matrix metalloproteinases (TIMPs) which play important roles in collagen deposition in wound healing. The hGFs and hDFs were primary cultured and allocated to arachidonic acid (AA) treatment group and control group. Protein and mRNA were extracted right after (0 hr) and 24 hr after AA treatment. At a defined concentration of AA in hGFs and hDFs, MTT assay was performed. The mRNA and protein expression levels of COX-2, TGF-β, collagen 1 and 3, MMP 1 and TIMP 1 were examined by Real-time PCR and Western blots. The amounts of PGE2 were measured by enzyme-linked immunosorbent assay (ELISA).The expression of COX-2 and TGF-β exhibited reduced levels in hGFs , but were increased in hDFs at 24 hr after AA treatment. Production of PGE2 was increased in hGFs and hDFs at right after AA treatment but, not changed at 24 hr after AA treatment. The protein and mRNA expression of collagen 1 and 3 were decreased in hGFs , whereas increased in hDFs at 24 hr AA treatment. Expression of MMP-1 protein was increased in hGFs at 24 hr but, was decreased in hDFs at 24 hr compared with that of control. The protein expression of TIMP-1 was decreased in hGFs but, was increased in hDFs at 24 hr compared with that of control. These observations demonstrate differential expression between gingival and dermal fibroblasts in regulation of collagenolytic capacity by extracellular matrix-associated genes in keloid formation associated with wound repair.
Two biogenic monoamines, octopamine and 5-hydroxytryptamine (5-HT), are known to play immune mediators in insects. They induce hemocyte behaviors by stimulating cytoskeleton rearrangement. However,it is not clear how they activate the hemocytes in terms of intracellular signal transduction. This study analyzed their interactions with signal pathways implicated in nodule formation via eicosanoids or hemocyte locomotory behavior via a small GTPase. Both octopamine and 5-HT increased hemocytic nodule formation in response to bacterial challenge in the beet armyworm, Spodoptera exigua. However, their immune mediation was inhibited by a treatment of dexamethasone (a specific inhibitor to phospholipase A2). In the presence of phentolamine (a specific antoganist to octopamine) or ketanserin (a specific antoganist to 5-HT), the inhibitory activity of dexamethasone was rescued by adding arachidonic acid (a precursor of eicosanoid biosynthesis). These results suggest that the mediation of nodule formation by the two monoamines is followed by eicosanoid signaling. Two monoamines also induced up-regulation of circulating hemocyte counts in S. exigua. This increase of hemocyte counts was not explained by de novo production of hemopoietic organ because even ligation between thorax and abdomenin order to block hemolymph circulation did not inhibit the increase of circulating hemocyte counts by octopamine.A small GTPase, Rac1, appeared to be involved in this hemocyte mobilization from a sessile compartment in S. exigua. Inhibition of Rac1 activity significantly suppressed hemocyte spreading behavior and the hemocyte mobilization. In summary, octopamine and 5-HT mediate cellular immune responses of S. exigua via eicosanoid signal or independently by activating Rac1 following increase of cAMP in the hemocytes.