검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.05 구독 인증기관·개인회원 무료
        In order to reduce the area of the high-level radioactive waste (HLW) repository, a buffer material with high thermal conductivity is required. This is because if the thermal conductivity of the buffer material is high, the distance between the disposal tunnels and the deposition holes can be reduced. Sand, which is a natural material and has higher thermal conductivity than bentonite, is added to bentonite to develop an enhanced buffer material. For the sand-bentonite mixture, it is important which sand to use and how much to add because an enhanced buffer material should satisfy both hydraulic (H) and mechanical (M) performance criteria while improving thermal conductivity (T). In this study, we would like to show what type of sand and how much sand should be added to develop an enhanced buffer material by adding sand to Gyeongju bentonite, a representative bentonite in Korea. For this purpose, the thermal conductivity, hydraulic conductivity, and swelling pressure of the sand-Gyeongju bentonite mixture according to the sand addition rate were measured. It is more efficient to use silica sand with smaller particles than Jumunjin sand which is a representative sand in Korea as an additive for an enhanced buffer material than using the Jumunjin sand. In order for the sand-Gyeongju bentonite buffer material to satisfy both the hydraulic and mechanical performance criteria as a buffer material while increasing the thermal conductivity, it is judged that the optimum dry density is 1.7 g/cm3 at least and the optimum sand addition rate is 10% at most.
        2.
        2022.10 구독 인증기관·개인회원 무료
        The buffer block, which is one of the main components of the engineering barrier system, plays an essential role in mitigating groundwater infiltration and radionuclide transport in a high-level nuclear waste repository. To achieve those purposes, the compacted buffer block must satisfy the functional safety criteria for dry density, water content, and many other components. In this study, the compation curves of the compacted bentonite-sand mixtures were evaluated to identify the relationship between the dry density and the water content of the buffer material. The floating die press at 10 MPa and the cold isostatic press at 40 MPa were applied to compaction of a buffer block with a diameter of 100 mm and a thickness of 10 mm. The condition of a bentonite-sand mixing ratio was 6:4, 7:3, 8:2, and 9:1 with 9 to 21% water content. As a result, the maximum dry density increases, the optimum moisture content decreases as the sand content of buffer material increases. This study can provide the conditions for manufacturing the compacted bentonite-sand buffer block.
        3.
        2022.10 구독 인증기관·개인회원 무료
        The backfill refills the deep geological disposal system after the installation of buffer in the disposal hole. SKB and Posiva have established the safety function for the backfill such as hydraulic conductivity of 10-10 m/s and swelling pressure of 0.2 MPa. The study on the thermal properties is required for the evaluation of performance design and long-term stability of backfill, since the thermal condition affects the hydraulic and mechanical behavior of backfill. Thermal conductivity is a key characteristic of thermal properties due to heat dissipation from spent fuel. In this study, thermal conductivities of bentonite-sand mixed blocks were measured. The silica sands were used instead of the crushed rock with bentonil-WRK, one of the candidate bentonite of the Korean repository system. The effects of size distribution and mass ratio of sand were evaluated. Four different size of silica sand (i.e., 0.18-0.25, 0.7-1.12, 1.6-2.5, 2.5-5.0 mm) and five mixing ratio (i.e., 1:9, 2:8, 3:7, 4:6, 5:5 of bentonite and sand) were used for characterization of thermal conductivity. As a result, the thermal conductivities were measured ranging from 1.6 to 3.1 W/m∙K depending on the size and mass ratio of the sand. The smaller the size or higher the mixing ratio of sand or the higher the water contents, the higher the thermal conductivity on the surface of backfill block. The higher compressing pressure induce higher thermal conductivity. Meanwhile, the feasibility study of backfill block productivity was reviewed according to the variables of this study. The excessive sand ratio and water contents lead to poor quality that results in the failure of the block. In Korea, the research of backfill is only now in fundamental steps, thus the results of this study are expected to use for setup the experimental conditions of hydraulic and mechanical performance, and can be used for the design of safety function and evaluation of long-term stability for deep geological disposal system.
        4.
        2022.05 구독 인증기관·개인회원 무료
        The buffer material plays a role in preventing the excessive rise in temperature generated from the high-level radioactive waste by dissipating the decay heat to the rock. For this reason, the buffer material must have thermal properties to ensure the performance of the deep geological repository. This study measured the thermal conductivity of sand-bentonite according to the mixing ratio to improve the thermal properties. The compacted buffer was manufactured with a sand-bentonite mixing ratio of 6:4, 7:3, and 8:2 with 9 to 12% water content. As a result, the thermal conductivity increases as the ratio of sand increases. As a further study, it is necessary to experiment on whether sand-bentonite’s hydraulic, mechanical, and chemical performance is suitable for the stable operation of a repository.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Increasing thermal conductivity of buffer materials makes the disposal tunnel and hole spacings in high-level radioactive waste (HLW) repositories decrease, so that the area of the HLW repository decreases, which gives more choices to choose the HLW repository site and economical cost savings to construct HLW repositories. Thus, developing enhanced buffer materials with improved thermal conductivity is needed. One of the methods to develop enhanced buffer materials is to add additives to the bentonite which is main material for buffer materials. Most additives have high thermal conductivity, but most additives do not swell or less swell than bentonite, so that the swelling pressure of the enhanced buffer materials by additives decreases compared to the swelling pressure of pure bentonite buffer materials. Swelling pressure is an important performance criterion to design buffer materials. Thus, it is important to confirm the swelling pressure of the enhanced bentonite. However, it is not simple to measure the swelling pressure of the buffer materials and furthermore, it takes several days to measure the swelling pressure of the buffer materials. For these reasons, swelling index can be considered to predict the swelling pressure of the enhanced buffer materials relatively. In this study, it was investigated through tests how the swelling index of bentonite-sand mixtures change according to the amount of sand and it was found that the linear relationship between swelling index and sand amount in the bentonite-sand mixtures.
        6.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고준위폐기물 처분장의 완충재 및 뒷채움재 후보물질로 고려되고 있는 경주벤토나이트를 대상으로 압축 벤토나이트 및 벤토나이트-모래 혼합물의 열전도도가 측정되었다. 압축벤토나이트는 건조밀도가 에서 범위에 대해, 압축 벤토나이트-모래 혼합물은 건조밀도가 에서 사이이고, 모래의 함량이 중량비로 10 wt%에서 30 wt%인 범위의 혼합물에 대해 측정하였다. 측정시료의 수분 함량은 중량비로 10 wt%에서 20 wt% 까지 변화시켰다. 압축 벤토나이트 및 벤토나이트-모래 혼합물의 열전도도는 수분함량이 일정할 때, 건조밀도가 증가할수록, 모래 함량이 많을수록 증가하였으며, 건조밀도가 일정한 경우에는 수분 함량과 모래 함량이 증가할수록 증가하였다. 각 건조밀도에서의 수분함량의 증가에 따른 열전도도 변화를 나타낼 수 있는 실험적 관계식들이 제시되었다. 이 관계식들은 10% 오차 범위에서 압축벤토나이트 및 벤토나이트-모래 혼합물의 열전도도 값을 예측할 수 있다.
        4,000원