검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2019.05 KCI 등재 서비스 종료(열람 제한)
        This study was investigated to improve the phosphorus release and water quality by transformation of sedimentary P fraction for application of CaO2. For the experiment, 0.5% (w/w) of CaO2 was homogenized in the sediment and incubated with the control for 20 days. The analytical results showed that pH increased with CaO2 and redox potential (ORP) was improved in the sediment of the reactor. The growth rate of chlorophyll-a was lower in the CaO2 reactor and Dissolved Oxygen (DO) of overlying water maintained higher than that of the control. Total phosphorus (T-P) concentration in the overlying water increased from the initial concentration to 0.304mg/L in the control at 20 days. The reactor of CaO2 was lowered by 29.3%. Ex-P, Fe-P and Ca-P in sediment P fraction were increased with the CaO2. The formation of bound Fe-P and Ca-P in the sediments seemed to control the release of P by removing the Soluble Reactive Phosphorus (SRP) presented in the pore water. From the result, this indicated that the reduction of P release from the sediments seems to be effective in suppressing the eutrophication of P and improving the oxygen condition in the water quality with the application of CaO2.
        2.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        Bioremediation in situ is heavily dependent on the oxygenic environment which would privide the dwelling microorganism with sufficient oxygen. The situation could be easily resolved with supply of an Oxygen Releasing Compound (ORC). In this paper we prepared that sort of material out of oyster shell powder (mostly calcium carbonate) that prevails every shore areas of the country. We used two different oxidizing methods in the first step of the whole manufacturing process–conventional heating in a furnace and an ultrasound generator to obtain calcium oxide. Then that calcium oxide was further oxidized into calcium peroxide which may release oxygen under a moisturized condition. The oxygen releasing experiments were run to test the performance of our products, and to determine the gas kinetics during the experiments. Interestingly, calcium peroxide derived from ultrasound treatment was much more energy-effective as ORC than that from furnace heating although the heat derived process was better than that of ultrasound in terms of oxygen content and its releasing rate. We also found that most of the data collected from the gas releasing experiments fairly supported an ordinary 1st order kinetics to oxygen concentration, which shaped a sharp discharge of oxygen at the very early moment of each test.