검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 35

        1.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron(Fe)-Molybdenum(Mo) alloyed nanoparticles and nanowires were produced by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl() and Molybdenum hexacarbonyl(). The influence of CVC parameter on the formation of nanoparticle, nanowire and size control was studied. The size of Fe-Mo alloyed nanoparticles can be controlled by quantity of gas flow. Also, Fe-Mo alloyed nanowires were produced by control of the work chamber pressure. Moreover, we investigated close correlation of size and morphology of Fe-Mo nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. Obtained nanoparticles and nanowires were investigated by field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.
        4,000원
        2.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized tungsten disulfide () powders were synthesized by chemical vapor condensation (CVC) process using tungsten carbonyl () as precursor and vaporized pure sulfur. Prior to the synthesis of tungsten disulfide nanoparticles, the pure tungsten nanoparticles were produced by same route to define the optimum synthesis parameters, which were then successfully applied to synthesize tungsten disulfide. The influence of experimental parameters on the phase and chemical composition as well as mean size of the particles for the produced pure tungsten and tungsten disulfide nanoparticles, were investigated
        4,000원
        3.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ordered to FePt nanoparticles are strong candidates for high density magnetic data storage media because the phase FePt has a very high magnetocrystalline anisotropy , high coercivity and chemical stability. In this study, the ordered FePt nanoparticles were successfully fabricated by chemical vapor condensation process without a post-annealing process which causes severe particle growth and agglomeration. The nanopowder was obtained when the mixing ratio of Fe(acac) and Pt(arac) was 2.5 : 1. And the synthesized FePt nanoparticles were very fine and spherical shape with a narrow size distribution. The average particle size of the powder tended to increase from 5 nm to 10 nm with increasing reaction temperature from to . Characterisitcs of FePt nanopowder were investigated in terms of process parameters and microstructures.
        4,000원
        4.
        2006.09 구독 인증기관·개인회원 무료
        FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.
        6.
        2005.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        1990년도 초반에 개발되어 나노분말의 제조 공정으로 집중적으로 연구되어온 화학기상응축공정은 고강도용 나노분말 소재이외에 기능성 자성재료로의 응용에 주로 이용되어 왔다. 최근에는 이러한 응용이외에 나노분말의 표면을 다양한 이종 소재로 응용하고자하는 나노캡슐(혹은 core/shell)화 제조 공정으로 진보되어 다양한 합금 시스템으로 발전하게 되었다. 특히 최근 Particles 2005, Surface Modification in Particle Tech
        4,000원
        8.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prevent the oxide formation on the surface of nano-size iron particles and thereby to improve the oxidation resistance, iron nanoparticles synthesized by a chemical vapor condensation method were directly soaked in hexadecanethiol solution to coat them with a polymer layer. Oxygen content in the polymer-coated iron nanoparticles was significantly lower than that in air-passivated particles possessing iron-core/oxide-shell structure. Accordingly, oxidation resistance of the polymer-coated particles at an elevated temperature below in air was times higher than that of the air- passivated particles.
        4,000원
        9.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at consisted of three layers of phases, but it had two phase core-shell structure which consited of phase of core and graphite of shell at
        4,000원
        13.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanosized WC and WC-Co powders were synthesised by chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(W(CO)) and cobalt octacarbonyl(Co(CO)). The microstructural changes and phase evolution of the CVC powders during post heat-treatment were studied using the XRD, FE-SEM, TEM, and ICP-MS. CVC powders were consisted of the loosely agglomerated sub-stoichimetric WC and the long-chain Co nanopowders. The sub-stochiometric CVC WC and WC-Co powders were carburized using the mixture gas of CH-H in the temperature range of 730-85. Carbon content of CVC powder controlled by the gas phase carburization at 85 was well matched with the theoretical carbon sioichiometry of WC, 6.13 wt%. During the gas phase carburization, the particle size of WC increased from 20 nm to 40 nm and the long chain structure of Co powders disappeared.
        4,000원
        14.
        2004.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The nano-sized Co particles were successfully synthesized by chemical vapor condensation (CVC) process using the precursor of cobalt carbonyl (). The influence of carrier gases on the microstructure and magnetic properties of nanoparticles was investigated by means of XRD, TEM, XPS and VSM. The Co nano-particles with different phases and shapes were synthesized with a change of carrier gas : long string morphologies with coexistence of fcc and hcp structure in Ar carrier gas condition; finer Co core in a mass of cobalt oxide with only fcc structure in He; rod type cobalt oxide phase in Ar+6vol%. The saturation magnetization and coercivity was lower in Co nanoparticles synthesized in He carrier gas, due to their finer size.
        4,000원
        20.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A chemical vapor condensation (CVC) process using the pyrolysis of metal-organic precursors was applied to produce the nanosized powders. Morphology and phase changes of the synthesized powder as a function of CVC parameters were investigated by XRD, BET and TEM. The agglomerated nanosized monoclinic powders with nearly spherical shape and 10-38 nm in mean diameter could be obtained. Conditions to produce the nanopowders are presented in this paper
        3,000원
        1 2