This study aims to select eggplant cultivars adaptive to the hot temperature period greenhouse climate by water consumption, and growth performance of plants and fruits of different European eggplant cultivars, including ‘Bartok (BA)’, ‘Bowie (BO)’, ‘Black Pearl (BP)’, ‘Ishbilia (I)’, ‘Mabel (M)’, ‘Vestale (VE)’ and ‘Velia (VL)’, in substrate hydroponic cultivation under hot and humid greenhouse conditions. On the 118 DAT, the leaf number and stem dry weight were highest in ‘VL’, followed by ‘M’, and there was no significant difference in leaf dry weight among cultivars. The marketable fruit number per plant was 16.4 for ‘M’, which was higher than other cultivars, and ‘VE’ and ‘VL’ were 8.5 and 8.8, respectively. The weight per fruit was low for ‘M’ at 136 g, and the highest in ‘VE’ and ‘VL’ at 332 and 281 g, respectively. There was no significant difference in fruit production per plant. In this study, ‘M’, which has high water use efficiency and a large number of fruits, and ‘VL’, which required less quantity to water consumption for producing 200 g of fruit and had a high product weight, will have excellent adaptability in the UAE greenhouse condition.
본 연구는 딸기재배시 전용 고설베드를 사용하지 않고, 일 반 수경재배 시설을 이용하여 코이어 배지를 베드에 올려 재 배하는 방법을 구명하기 위해서 실시하였다. 토마토나 파프 리카를 재배하는 시설재배 베드에 코이어의 칩과 더스트 비율 이 5:5인 코이어 배지 1겹 처리(높이 10cm; A), 2겹으로 쌓은 처리(높이 20cm; B), 코이어의 칩과 더스트 비율이 7:3인 코 이어 배지 1겹 처리(높이 15cm; C)와 대조구로는 딸기 전용 플라스틱 화분(Control) 처리구로 하였다. 생육특성은 코이 어 배지 높이별로는 유의성이 없었고, 플라스틱 화분에서 재 배한 것이 작은 경향을 보였다. 딸기 잎의 광합성율은 처리별 로 14.68-15.76μmol CO2·m-2·s-1로 통계적인 유의성은 없 었고, 뿌리의 근활력은 배지 용량이 컸던 C와 B 처리구가 A 처리구와 대조구보다는 높은 것으로 나타났다. 과장과 과폭 은 각각 4.04-4.13cm와 3.26-3.34cm로 통계적인 유의성 이 없었고, 과장과 과폭 비율은 대조구가 1.27로 A-C 처리 구의 1.23-1.24보다 뾰쪽한 형태이었다. 딸기 1주당 수확과 수는 C 처리구가 4.4개로 가장 적었고, 대조구, A, B 처리구의 6.2-6.5개로 처리간 유의성은 없었다. 상품수량 과수는 A 처 리구가 74개로 가장 많았고, C 처리구가 53개로 가장 적었으 며, 1주당 수량은 A 처리구가 72.38g으로 가장 컸고, C 처리 구가 48.69g으로 가장 작았다. 이와 같은 결과는 딸기재배 시 전용재배 시설을 설치하지 않고, 기존의 토마토나 파프리카 수경재배 시설에서 코이어 배지를 활용하여 딸기재배를 할 수 있다는 것을 나타낸다. 다만 C 처리구에서 수량이 감소한 것 은 칩과 더스트 비율이 7:3으로, A와 B 처리구의 칩과 더스트 비율이 5:5와 다른 것이 원인으로 추정되며 칩과 더스트 비율 에 따른 추가 연구가 필요하다.
코이어 배지를 이용한 파프리카 재배에서 직접 정식 시 절곡 방법에 따른 정식 후 초기 생육과 수확량을 비교하였다. 절곡 방법은 I-type(절곡각도 0°), 옆으로 뉘인 L-type(절곡각도 90°), 뒤집어서 뿌리가 위로 향하도록 하는 U-type(절곡각도 180°)로 하였다. 줄기 신장 및 직경, 엽면적의 주간 평균 발달량은 정식 후 초기에 다른 처리구에 비해 영양생장이 왕성하였던 I-type에서 가장 높았다. 정식 후 46주째의 뿌리 무게도 I-type 처리구에서 다른 처리구들에 비해 약 1.3-1.7배 정도 무거웠다. 처리구별로 330주에서 생산된 수확량은 각각 약 510, 420 및 480kg으로 I-type에서 가장 높았다. 따라서 코이어 배지를 활용한 파프리카 재배에서 직접 정식 시 정식 초기의 뿌리 활착 및 세력 확보, 그리고 이후 착과 안정성에서 I-type이 적합할 것으로 판단된다.
멜론(Cucumis melo L.)의 수경재배에서 급액량이 생육과 과실 품질에 미치는 영향이 매우 크기 때문에 품종별 그 특성을 조사하고 품종별 급액량을 다르게 조절하여 실험을 수행하였다. 2019년에 ‘달고나’를 비롯한 12품종의 멜론을 동일한 관 수량으로 재배하여 품종 특성을 조사하고 각각의 생육 정도를 몇 개의 그룹으로 분류하였다. 줄기 마디길이(0-20마디), 엽 면적 및 과중은 ‘달고나’ 가 가장 작은 그룹이었고 ‘월드스타’ 가 중간, ‘킹스타’가 가장 큰 그룹에 속했다. 실험 결과를 바탕으로 ‘달고나’, ‘월드스타’, ‘킹스타’ 및 ‘루비볼’을 실험품종으로 선발하여 2020년에 각 품종별로 급액 요구량에 맞도록 급액량을 각각 다르게 처리하였다. 재배기간 동안 품종별로 배액률을 모니터링하면서 급액량을 각각 조절한 결과, ‘생육초기’에는 4품종 모두 비슷한 급액량을 요구하였으나 ‘개화기’ 부터는 ‘월드스타’와 ‘킹스타’ 2품종, ‘루비볼’과 ‘달고나’ 2품 종의 급액량이 비슷하게 변화하였다. ‘착과시기’부터 품종별로 급액량의 급격한 변화가 관찰되었는데 ‘달고나’가 제일 먼저 급액량이 줄어들기 시작하였고, 다음으로 ‘루비볼’, ‘월드스타’, ‘킹스타’ 순으로 점점 줄어드는 경향을 보였다. 이러한 품종 간 생육 및 과실 품질의 차이는 품종 고유의 특성에서 비롯된 것이며, 멜론 수경재배에서 품종별 생육 특성이 급액 요구량에 미치는 영향이 매우 크다는 것을 알 수 있었다. 따라서 멜론 수경재배 시 고품질의 과실을 생산하기 위해서는 그 품종 고유의 생육 특성을 반영한 정밀한 급액량 조절이 필요할 것으로 판단된다.
멜론(Cucumis melo L.)의 코이어 배지 수경재배 시 고품질 과실을 생산하기 위한 적정 착과 절위, 적심 절위 및 수확 시기를 구명하고자 하였다. 코이어 배지 슬라브(100 × 20 × 10cm)에 3주를 정식하였다. 양액은 야마자키 멜론 표준액을 이용하였고, 급액 농도는 ‘초기-중기(과실 비대기)-후기’의 생육 단 계별로 1.8-2.0-2.3dS·m-1 공급하였다. 착과 및 적심 절위 실험은 ‘피엠알달고나’와 ‘얼스아이비’ 2품종을 이용하였다. 착과 절위 실험은 8-10, 11-13 및 14-15 마디에 각각 3처리하였다. 적심 절위 실험은 18, 21 및 24 마디에 각각 3처리하였다. 과실 수확시기 실험은 ‘피엠알달고나’와 ‘얼스크라운’ 2품종을 이용하여 착과 45일, 50일, 55일 및 60일 후로 4처리하였다. ‘피엠알달고나’ 품종에서 11-13마디 이상 착과 시, 엽폭 28.2cm, 엽면적은 10,845cm2로 가장 컸다. 줄기 길이는 ‘얼스아이비’ 품종에서 11-13마디 착과시 147.6cm로 가장 길었다. 과중은 ‘얼스아이비’ 품종에서 11-13마디 착과시 2.0kg으로 가장 컸다. 과실의 가용성 고형물 함량(SSC)은 ‘피엠알달고나’ 품종에서 8-10 마디 착과시 14.5°Brix, 24 마디 적심시 14.0°Brix로 각각 유의성 있게 가장 높았다. 착과 절위가 낮아 질수록 SSC값이 증가하는 경향이 두 품종에서 동일하게 나타났다. ‘피엠알달고나’와 ‘얼스크라운’ 2품종 모두 착과 55-60 일 후 수확된 과실의 SSC 값과 과중이 가장 우수하였다. 종합적으로 검토하면 대부분 SSC값은 착과 절위가 낮아지고 적심 절위가 높아질수록 증가하고, 과중은 착과 절위가 높아질수록 증가하는 경향을 보였다. 착과 후 일수가 증가할수록 과실 의 SSC값이 증가하였으며 다양한 품종에 대한 추가 연구가 더 필요하다고 생각되었다. 따라서 코이어 배지를 이용한 수 경재배 시 멜론 품종 별로 특성을 잘 파악하여 착과 절위, 적심 절위 및 과실 수확시기를 설정하여야 한다.
최근 수경재배에서 가장 많이 사용되는 친환경 유기배 지인 코이어 배지를 사용하였을 때 코이어 칩과 더스트 비율, 급액량에 따라 멜론의 생육과 과실 품질을 분석하고 봄 재배시 코이어 배지를 이용한 멜론 수경재배의 기초 자료를 제공하고자 본 연구를 수행하였다. 실험에 사용한 2 종류의 코이어 배지는 칩과 더스트의 비율이 각각 3:7, 5:5이었으며, 배액률 10, 20, 30% 수준으로 급액하였을 때 멜론의 생육과 품질 변화, 배지의 물리적 ·화학적 변화를 분석하였다. 배액률 10%를 기준으로 양액을 공급한 처리구는 총 급액량이 주당 91L로 급액량이 가장 많은 배액률 30% 처리구에 비해 약 30% 절감되었다. 총 배액량 또한 급액량이 가장 적은 배액률 10% 처리구에서 주당 10L 이하로 낮은 값을 나타내었다. 더스트 비율이 높은 칩:더스트 3:7 배지는 5:5 배지 보다 총 배액량이 약 30-70% 감소하였다. 급액량이 많고 더스트 비율이 높은 3:7 배지를 사용했을 경우 엽생육과 과실 비대가 좋았고 당도는 품종 간 차이가 컸다. 배액률 30%를 기준으로 급액하면 배액률 10% 기준으로 급액하였을 때보다 과중이 21% 증가하였다. 더스트의 비율이 높은 3:7 배지는 5:5 배지보다 용기용수량, 공극 률 등 배지 물리성이 우수하였고, 재배 기간 중 네트발 현기 이후 배액 EC가 3.0-6.8dS·m-1로 높은 값을 나타내 었다. 재배 품종 특성 및 재배 조건 등을 고려하여 적정한 양수분 관리를 하면 코이어 배지를 이용한 수경재배 시 고품질의 멜론을 생산할 수 있을 것으로 판단된다.
수경재배에서는 근권내 양분의 집적 정도는 급액의 양과 밀접한 관계를 가지기 때문에 급액의 양(횟수)이 토마토의 생육과 수량에 미치는 영향이 크다. 따라서 본 시험에서는 코이어를 이용한 토마토 장기 수경재배에 급 액량이 근권의 무기이온에 미치는 영향을 구명하고자 하였다. 적산일사량을 기준으로 급액량을 조절하였으며 생육시 기별로 적산일사량 설정치를 변경하며 급액량을 4수준으로 처리하였다. 처리별 매일의 급액량과 배액량을 조사하였고 배액율을 계산하였다. 급액량이 많을수록 토마토의 수분 흡수 량은 증가하는 경향이었다. 그러나 High 처리구는 2월과 3월에 Medium high 처리구에 비하여 수분 흡수가 감소 하였다. 월별 평균 급액량과 배액율을 계산하여 배액율이 20-30%되는 급액 구간으로 1월은 120-140J/cm2, 2월 은 100-120J/cm2, 3월은 80-100J/cm2, 4월은 70-90J/cm2, 5월은 60-75J/cm2로 적정한 범위를 정할 수 있었다. 급 액량이 많을수록 이온들의 농도가 낮아서 근권의 양분집 적을 상당 부분 방지할 수 있었는데 양분을 흡착하는 코이어 배지의 특성 때문에 배액율이 20-30%인 경우 근 권의 무기이온의 농도는 상당히 높았다. 그런데 P와 K는 처리에 관계없이 배액에서 급액농도 보다 낮아지는 경우가 발생하였으며, 급액량이 많은 처리에서도 Mg와 S가 가장 잘 집적되는 이온이었다. 일사 량이 적은 시기에는 급액량에 따른 배액내 무기이온의 농도는 큰 차이를 나타내지 않았으나, 일사량이 많은 시기에는 급액량이 적을수록 배액의 무기이온의 농도가 높았다. 특히, 3월 이후에는 급액량 조정만으로는 배액의 이온농도 상승을 방지하기 어려워 우선적으로 급액 EC 를 낮춰 근권에 양분이 집적되는 것을 막을 필요가 있었다.
수경재배에서는 제한된 근권에서 작물의 양수분 흡수 특성을 고려하여 양액을 공급하여 재배하고 있지만 작물의 무기이온 흡수는 기상조건이나 작물의 생장에 의해 이온간 흡수비율이 달라지므로 근권내 이온의 균형이 깨지기 쉽다. 그런데 최근에는 토마토 재배에는 무기배지인 암면을 대체하여 코이어 배지가 주로 이용되고 있는데 코이어 배지를 이용한 장기재배에서 양액의 공급이 근권과 생육에 미치는 영향에 관한 연구는 거의 없다. 따라서 본 시험에서는 코이어를 이용한 토마토 장기 수경재배에 급액의 EC농도가 근권의 무기이온과 생육에 미치는 영향을 구명하고자 하였다. 칩과 더스트가 5:5로 혼합된 코이어 배지를 이용하였으며, 급액의 EC를 1.0, 1.5, 2.0, 3.0 dS·m-1 로 달리 공급하였다. 급액 EC가 낮은 1.0dS·m-1, 1.5dS·m-1 처리구에서는 NO3-N, P, Ca, Mg 이온이 초기에 급액농도 보다 배액의 농도가 낮았다. 그러나 P를 제외한 모든 이온이 EC 2.0dS·m-1 농도 보다 농도로 급액한 것은 배지내 농도가 매우 높아졌다. 배액에 특히 높아지는 이온은 S와 Mg 였다. 평균 과중은 3화방까지는 EC 1.0dS·m-1, 1.5dS·m-1 간에 큰 차이가 없었으나 이후로는 급액의 EC가 높을수록 과중이 작았다. 6화방까지 수확 과수와 수량이 1.5dS·m-1가 가장 많았으나 재배기간이 경과할수록 고농도 급액구의 수량이 감소하였다. 배꼽썩음과는 생육초기에는 주로 EC 3.0dS·m-1 처리에서만 발생하였으나 일사량이 증가하면서 모든 처리에서 발생하였다. 발생율은 EC 3.0dS·m-1 처리구가 높고, 더 낮은 농도 처리에서는 발생율의 차이가 없었다.
비순환식 고형배지경에서 배액이 토양과 지하수 오염을 발생시키는 문제를 해결하고자 그동안 연구된 데이터를 바탕으로 배액 최소화 재배방식을 확립을 위해 본 연구는 토마토 코이어 수경재배농가 시설에서 FDR 센서, 적산일사량 센서 및 타이머를 이용하여 토마토를 재배하며 급배액량, 생육 및 생산량을 비교하였다. 정식 후 88일까지 일일 식물체당 평균 급액량은 처리구에 따른 큰 차이가 없었다. 하지만 정식 후 88일 이후 107일 까지 TIMER, FDR, IR 제어구 각각의 일일 식물체당 평균 급액량은 IR(2125mL) > TIMER(2063mL) > FDR(1983mL) 수준이었고 108일부터 120일 까지는 IR(2000mL) > TIMER(1664mL) > FDR(1500mL) 수준 이었다. 배액률은 TIMER 제어구의 경우 5~12%, FDR 센서 제어구의 경우 0~7%, IR 제어구의 경우 12~19% 수준으로 IR > TIMER > FDR 순이었다. 정식 후 88일 이후부터는 FDR과 IR 제어구가 급액량에 상이한 결과를 보였는데, 이는 재배 후기 즉, 5월 20일 이후 (정식 후 94일) 누적일사량의 증가로, IR 제어구에서는 급액이 증가된 반면 FDR 센서 처리구는 적심 이후 30일이 경과된 6월 2일경부터 IR 제어구 보다 일일 급액량이 평균 500mL 적게 공급된 결과이다. 식물체 생육 및 상품과 수량도 급액방식에 따른 통계적 유의차는 없었지만, 당도는 FDR 처리구에서 TIMER 처리구에 비해 약 11%, IR 처리구에 비해 약 18% 높았다.
본 연구는 환경오염과 양수분 손실을 주는 비순환식 수경재배에 FDR센서를 이용한 자동관수시스템을 적용할 때 관수효율을 높이기 위한 최적의 최소대기시간을 설정하고자 수행되었다. 실험은 가을과 겨울철에 봄과 여름철에 두 번 수행하였고 가을과 겨울철에는 3분 급액과 최소대기시간을 5분으로 한 3R5F 처리구, 3분 급액과 최소대기시간을 10분으로 한 3R10F 처리구, 5분 급액과 최소대기시간을 15분으로 한 5R15F 처리구를 설정하여 실험하였고 봄과 여름철에는 3분 급액과 최소대기시간을 5분으로 한 3R5F 처리구, 3분 급액과 최소 대기시간을 10분으로 한 3R10F 처리구를 설정하여 실험하였다. 3분 급액은 주당 60mL, 5분 급액은 주당 80mL가 공급되었다. 가을과 겨울철 재배에서 정식 후 62일 까지 주당 급액량은 3R5F (858mL) > 5R15F (409mL) > 3R10F (306mL) 처리 순으로 나타났고 배액률은 3R5F (44%) > 5R15F (23%) > 3R10F (14%) 순으로 나타났다. 정식 후 62일부터 102일 까지는 일일 주당 급액량이 5R15F (888mL)> 3R5F (695mL)> 3R10F (524mL) 순으로 나타났고 이 시기에 배액률은 5R15F에서 가장 높았다. 봄과 여름재배에서는 일일 주 당 급액량과 배액율이 3R5F 처리구에서 3R10F 처리구보다 높았다. 두 재배 모두에서 수분이용효율 (WUE)은 3R10F 처리에서 높았다. 따라서 FDR 센서를 활용한 자동화 관수 시스템에서 관수효율을 높이기 위한 최소대기시간은 10분으로 고찰된다.
본 연구는 FDR(Frequency Domain Reflectometry) 센서를 이용하여 코코넛 코이어 배지에서 급액 공급관리에 적합한 수분측정 장소를 찾고 보다 정밀한 측정 방안을 제시하기 위한 기초 실험으로 급액구에서의 측정거리와 위치 그리고 노이즈 필터 사용에 따른 수분변화와 편차를 조사하였다. 시판되는 코코넛 코이어 슬라브 중 coir dust 와 chip의 함량이 10:0, 7:3, 5:5, 3:7인 배지들을 사용했고 배지 윗면과 측면에 급액구부터 5, 10, 20, 30cm의 거리를 두어 센서를 설치하여 동일한 급액을 공급한 후 수분변화를 측정하였으며, 노이즈 필터 사용 여부에 따른 수분변화는 내부가 균일한 인공토양인 글라스 비드를 포수하여 설치간격 0, 6, 12, 21cm에서 측정하였다. 배지조성에 상관없이 센서가 급액구에 가까울수록 높은 수분함량 증가를 나타내었다. 배지 조성 3:7과 10:0에서는 윗면과 측면 측정에 따른 배지 수분함량 변화 특성이 차이를 보이지 않았으나 5:5와 7:3에서는 윗면을 측정시 보다 높은 수분함량 증가를 보였다. Chip 함량이 상대적으로 많은 3:7 배지에서는 다른 배지들보다 수분함량 증가가 낮았다. 노이즈 필터를 사용하게 되면 측정치 변동과 편차가 감소하였다. 따라서, 코코넛 코이어 배지에서 FDR센서를 이용해 배지 수분 계측시 급액구에 가까운 거리의 윗면을 측정하는 것이 급액 이후 배지내 변화를 관측이 용이하다. 다수의 센서를 사용하여 측정할 경우에는 센서 간 간격을 21cm 이상으로 넓게 설치하도록 하며, 노이즈 필터는 측정 안정성 향상을 위해 사용을 권장한다.
본 연구는 토마토 수경재배에서 Frequency Domain Reflectometry(FDR) 센서를 활용한 무배액 시스 템에 적합한 코이어 배지의 chip과 dust 비율을 구명하기 위한 기초 실험으로 chip 함량에 따른 일일 급액량, 배액량, 배지의 용적당 수분함량 및 전기전도도, 식물생육, 과실 수량과 수분이용효율 측정을 목적으로 수행되었다. 시판 코이어 슬라브 중 chip과 dust 부피비율이 0 : 100%, 30 : 70%, 50 : 50%, 70 : 30%인 것과 대조구로 시판 rockwool 배지와 2층 슬라브, 즉 1층에 chip함량과 2층에 dust함량이 15 : 85%, 25 : 75%, 35 : 65%인 것을 사용하여 실험하였다. 실험에 사용된 배지 중 0 : 100%와 rockwool 배지는 전 생육기간 동안 배액이 배출 되지 않았고 나머지 모든 배지에서도 극소량의 배액이 배출되었다. 일일 평균 급액량은 시판 슬라브와 2층 슬라브 배지 모두에서 chip 함량에 따라 다르게 나타났다. 식물 생육, 상품과 수량 및 수분이용효율은 chip과 dust의 비율이 0 : 100%인 시판 슬라브에서 가장 높게 나타났다. 따라서, FDR센서에 의한 자동급액 방식으로 토마토 작물을 재배 할 때 chip과 dust 부피비율이 0 : 100%인 코이어 배지를 사용할 경우 식물이 더욱 효과적으로 수분을 이용하여 생산량이 증가되면서도 배액을 최소화하거나 배액을 창출하지 않아 환경오염을 감소시킬 수 있다. FDR 센서에 의해 자동 급액되는 시스템에서 1회 급액량과 급액간격 기능을 생육단계별로 조정하여 배지의 물리성에 따른 급액 일정에 대한 세밀한 실험이 앞으로 수행될 계획이다.
유기물 코이어 배지를 이용한 절화장미 수경재배시 유묘기 급액농도가 장미의 생육에 미치는 영향을 구명하기 위하여 배양액을 0.6, 1.0, 1.4, 1.8dS·m-1로 다른 농도로 공급하였다. 배지 추출액의 EC와 무기이온은 정식 22일까지는 높은 농도로 양액을 공급하여도 처리간에 큰 차이가 없었다. 이후 급액농도가 높을수록 빠른 속도로 배지내 양분농도도 높아졌다. 신초의 발생량은 정식후 30일째에 해당하는 2차 신장기에는 1.8dS·m-1로 급액한 처리구에서 가장 많았고, 3차와 4차에는 0.6dS·m-1 처리구를 제외하고 처리간 차이가 없었으나, 급액농도가 높을수록 신초의 발생량이 많은 경향을 나타내었다. 따라서 장미 유묘기(수체형성기간 약 6개월 정도)의 급액농도는 기존의 무기배지를 이용한 수경재배에서는 3~4월에 정식한 이후 고온기로 갈수록 급액농도 점진적으로 낮추어 1.0dS·m-1 내외로 낮게 관리하는 것이 일반적이지만, 코이어 배지를 이용한 수경재배에서는 코이어 배지가 양분을 흡착하기 때문에 정식 후 약 3개월은 EC 1.8dS·m-1로, 이후에는 약 3개월은 1.4dS·m-1 정도로 관행적인 농도보다 높게 관리하는 것이 바람직 할 것으로 판단되었다.