Pivotal roles of steroid hormones in uterine endometrial function are well established from the mouse models carrying the null mutation of their receptors. Literally androgen belongs to male but interestingly it also detected in female. The fluctuations of androgen levels are observed during reproductive cycle and pregnancy, and the functional androgen receptor is expressed in reproductive organs including uterus. Using high throughput methodology, the downstream genes of androgen have been isolated and revealed correlations between other steroid hormones. In androgen-deficient mice, uterine responses to exogenous gonadotropins are impaired and the number of pups per litter is reduced dramatically. As expected androgen has important role in decidual differentiation through AR. It regulates specific gene network during those cellular responses. Recently we examined the effects of steroid hormonal complex containing high level of androgen. Interestingly, on the contrary to the androgen-alone administration, the hormonal complex did not disturb the decidual reaction and the pubs did not show any morphological abnormality. It is suspected that the complexity of communication between other steroid hormone and their receptors are the reasons. In summary, androgen exists in female blood and it suggests the importance of androgen in female reproduction. However, the complex interactions with other hormones are not fully understood compared with estrogen and progesterone. The further studies to evaluate the possible role of androgen are needed and important to provide the in vivo rational for the prevention of associated pregnancy complications and help human's health.
It is very important to measure and monitor hull stress which is caused by a buoyant force and a weight of cargo for safety of ship. However, an exact measurement of hul stress, using the traditional strain gage which is made of metal or semiconductor, is very difficult, because a ship would be exposed by the severe temperature environment of -20 ℃ to 80 ℃. This paper propose a new concept strain gage which can improve accuracy and compensage effectively affects due to temperature. The strain gage is consists of two parts. One is the Hull Deformation Amplifier which introuce several lever and link system, and another is a transducer converting distance into voltage signal. The HDA measure the amount of deformation and amplify it. And a lever and link system of the HDA is introduced for compensating temperature deformation by installing in perpendicular direction without stress. This paper also reports on the results of the experiments to verify linearity of the strain gage.