검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.05 구독 인증기관·개인회원 무료
        The organic complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA) can enhance the radionuclides’ solubility and have the potential to induce the acceleration of radionuclides’ mobility to a far-field from the radioactive waste repository. Hence, it is essential to evaluate the effect of organic complexing agents on radionuclide solubility through experimental analysis under similar conditions to those at the radioactive waste disposal site. In this study, five radionuclides (cesium, cobalt, strontium, iodine, and uranium) and three organic complexing agents (EDTA, NTA, and ISA) were selected as model substances. To simulate environmental conditions, the groundwater was collected near the repository and applied for solubility experiments. The solubility experiments were carried out under various ranges of pHs (7, 9, 11, and 13), temperatures (10°C, 20°C, and 40°C), and concentrations of organic complexing agents (0, 10-5, 10-4, 10-3, and 10-2 M). Experimental results showed that the presence of organic complexing agents significantly increased the solubility of the radionuclides. Cobalt and strontium had high solubility enhancement factors, even at low concentrations of organic complexing agents. We also developed a support vector machine (SVM) model using some of the experimental data and validated it using the rest of the solubility data. The root mean square error (RMSE) in the training and validation sets was 0.012 and 0.016, respectively. The SVM model allowed us to estimate the solubility value under untested conditions (e.g., pH 12, temperature 30°C, ISA 5×10-4 M). Therefore, our experimental solubility data and the SVM model can be used to predict radionuclide solubility and solubility enhancement by organic complexing agents under various conditions.
        2.
        2022.10 구독 인증기관·개인회원 무료
        Organic complexing agents may affect the mobility of radionuclides at low- and intermediate-level radioactive waste repositories. Especially, isosaccharinic acid (ISA) is the main cellulose degradation product under high pH conditions in cement pore water. ISA can combine with radionuclides and form stable complexes that adversely influence adsorption in the concrete phase, resulting in radionuclides to leach to the near- and far-fields of repositories. This study focuses on investigating the sorption of ISA onto engineered barriers such as concrete, thereby studying adsorption isotherms of ISA on concrete and comparing various isotherm models with the experimental data. The adsorption experiment was conducted in three background solutions, groundwater (adjusted to pH 13 using NaOH), State 1 (artificial cement pore water, pH 13.3), and State 2 (artificial cement pore water, pH 12.5), in a batch system at a temperature of 20°C. Concrete was characterized using BET, Zeta-potential analyzer, XRD, XRF, and SEM-EDS. ISA concentrations were detected using HPLC. The experimental data were best fitted to one-site Langmuir isotherm; On the other hand, either two-site isotherm or Freundlich isotherm couldn’t give reasonable fitting to the experimental data. The observed ISA sorption behavior on concrete is crucial for the disposal of radioactive waste because it can significantly lower the concentration of ISA in the pore water. Although one-site Langmuir isotherm might effectively represent the sorption behavior of ISA on concrete, the underlying mechanism is still unknown, and further investigation should be done in the near future.
        3.
        2022.10 구독 인증기관·개인회원 무료
        Engineered barriers (concrete and grout) in Low- and Intermediate-Level Waste (L/ILW) disposal facilities tend to degrade by groundwater or rainfall water over a long period of time. During the degradation process, radionuclides stored in the disposal facility might be released into the pore water, which can pass through the natural rock barriers (granite and sedimentary rock) and may reach the near-field and far-field. In this transportation, radionuclide might be sorbed onto the engineered and natural rock barriers. In addition, the organic complexing agent such as ethylenediaminetetraacetic acid (EDTA) and α-isosaccharinic acid (ISA), is also present in pore water, which may affect the sorption and mobility of radionuclide. In this study, the sorption and mobility of 90Sr under different conditions such as two pHs (7 and 13), different initial concentrations of organic complexing agents (from 10-5 M to 10-2 M), and solutions (groundwater, pore water, and rainfall water) were investigated in a batch system. The groundwater was collected at the L/ILW disposal facility located at Gyeongju in South Korea. The pore water and rainfall water were artificially made in the laboratory. The concrete, grout, granite, and sedimentary rock samples were collected from the same study sites from where the groundwater was collected. The rock samples were crushed to 53-150 micrometers and were characterized by XRD, XRF, SEM-EDS, BET, and zeta potential analyzer. 90Sr concentration was determined using liquid scintillation counting. The sorption of 90Sr was described by distribution coefficients (Kd) and sorption reduction factor (SRF). In the case of EDTA, the Kd values of 90Sr remained constant from 10-5 M to 10-3 M and tended to decrease at 10-2 M, while in case of ISA the Kd values decreased steadily as the concentration of ISA was increased from 10-5 M to 10-3 M; However, a sudden reduction in the Kd values were observed above 10-2 M. In comparison to EDTA, ISA gave a higher SRF of 90Sr. Therefore, from the above results, it can be concluded that the presence of ISA has a greater effect on the sorption and mobility of radionuclide in the solutions than EDTA, and the radionuclide may reach near- and far-field of the L/ILW disposal facility.
        4.
        2022.10 구독 인증기관·개인회원 무료
        Radionuclides can be leached into groundwater or soil over a long period of time due to unexpected situations even after being permanently disposed of in a repository. Therefore, it is necessary to investigate the mobility of radionuclides for the safety assessment of radioactive waste disposal. In this study, the effects of organic complexing agents such as ethylenediaminetetraacetic acid (EDTA) and isosaccharinic acid (ISA) on the sorption behavior of 239Pu and 99Tc over cementitious (concrete and grout) and natural rock samples (granite and sedimentary rock) were investigated in batch sorption experiments. For characterization of rock samples, XRD, XRF, FT-IR, FE-SEM, BET, and Zeta-potential analyses were performed. For the evaluation of mobility, the distribution coefficient (Kd) was selected and compared. The adsorption experiment was carried out at two pHs (7 and 13), a temperature of 20°C, and a range of organic complexing agents concentrations (10-7~10-2 M and 10- 5~10-2 M for 239Pu and 99Tc, respectively). The radionuclides concentrations in adsorption samples were analyzed using ICP-MS. The Kd values for 239Pu in all rock samples reduced significantly due to the presence of EDTA, even at low concentrations such as 10-5 M. In the case of ISA, the limiting noeffect concentration was much higher than that of EDTA. On the other hand, 99Tc showed relatively lower Kd values than 239Pu, and the sorption behavior of 99Tc was almost unaffected by the organic complexing agents for all rock samples. Therefore, it is possible to assume that the increased mobility of radionuclides, especially, 239Pu, in groundwater caused by the lowering of sorption at even low concentrations of organic complexing agents may result in the transport of radionuclides to the nearand far-field location of the repository.
        5.
        2022.10 구독 인증기관·개인회원 무료
        Organic complexing agents which are contained in the radioactive waste can form the complex with radionuclides and enhance the solubility of radionuclides. The mobility of radionuclides to the far-field from the repository will be increased by radionuclide-ligand complex formation. Therefore, the assessment of the radionuclides’ solubility should be performed in the presence of organic complexing agents. In this study, five radionuclides (cobalt, strontium, iodine, cesium, and uranium) and three organic complexing agents (ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA)) were selected as model radionuclides and organic complexing agents, respectively. For simulating the in-situ condition, the groundwater near the repository was collected and applied in solubility experiments and the solubility was measured in various environmental conditions such as different pHs (7, 9, 11, and 13), temperatures (10°C, 20°C, and 40°C), and a range of organic complexing agent concentrations (10-5, 10-4, 10-3, and 10-2 M). In cases of cesium and iodine, they were very soluble in all conditions, and the effect on their solubilities was not observed. However, at high pHs, cobalt and strontium showed lower solubilities than at neutral pH and the solubility enhancement by the organic complexing agents was significant. Moreover, the effects of each organic ligand showed obvious differences and were in the order of EDTA > NTA > ISA. The solubility of uranium was increased with increasing the organic ligand concentration at lower pHs, but the organic complexing agents did not cause a remarkable difference at high pHs. According to these results, the presence of complexing agents could enhance the radionuclides’ solubility and increase the potential to release the radionuclides to the far-field from the repository. Solubility experiments of other major radionuclides in the repository are in progress.