검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 48

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400oC. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.
        4,000원
        2.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).
        4,000원
        3.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An hydrogen adsorption study on graphene-based surfaces consisting of nitrogen-doped graphene and core–shell type catalysts of initially Pd13 , Pt13 , PdPt12 and PtPd12 core–shells, is presented in this work. Density functional theory results indicate correlation between charge transfer and structural properties, hydrogen adsorption energies, magnetic behavior and electronic properties. Reduction of hydrogen, together with higher values of charge transfer was observed for high hydrogen dissociation, compared to the case of non-hydrogen dissociation. In some cases, these values may be almost an order of magnitude larger than that of non-hydrogen dissociation. Hydrogen dissociation is also related to oxidation of the surface and correlates with a non-core shell-type structure, high adsorption energies and low magnetic moments, in general. Besides, core shell-type structure dramatically changes the magnetic and electronic properties of charge transfer. The results obtained in this work may provide important information for storing hydrogen.
        4,000원
        4.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Core–shell ZIFs wrapped CuO hybrid materials (CuO@ZIF-67(Co)) were designed, synthesized, characterized, and employed as peroxymonosulfate (PMS) activators to degrade methylene blue (MB). It demonstrated outstanding catalytic activity on account of the unique structure and the synergistic effect between CuO cores and ZIF-67(Co) shells, resulting in complete degradation of MB (10 mg/L) in 1 min. Reactive oxygen species (ROSs) research showed that both SO4 − and OH were responsible for the removal of MB. The synergistic activation mechanisms in the CuO@ZIF-67(Co)/PMS system were investigated, which mainly involved the effective electron transfer of CuO and ZIF-67(Co) for accelerating the cycle of CuII/ CuI and CoIII/ CoII. This study broadens the application of MOF-derived materials for wastewater treatment.
        4,500원
        6.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report the behaviour of carbon black (CB) nanoparticles (spherical carbon shells), subjected to external pressure, using diamond anvil cell at synchrotron facility. CB nanoparticles have been synthesized by lamp black method using olive oil as combustion precursor and ferrocene as an organometallic additive. The catalyst-assisted CB has an iron oxide (γ-Fe2O3) core and amorphous carbon shell (i.e. core–shell structure). Our present study suggests that the carbon shells are partially transparent to the applied high pressure, and result in the reduction of effective pressure that gets transferred to the iron oxide core. High-pressure Raman spectroscopy results indicate that the surrounding carbon shells get compressed with pressure and this change is reversible. However, no structural transformation was observed till the highest applied pressure (25 GPa). The Raman spectroscopy results also suggests that the carbon shells are less pressure sensitive as their pressure coefficients (dω/dP) of G-peak were calculated (3.79 cm− 1/GPa) to be less than that for other carbon allotropes.
        4,000원
        7.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work reported the electrochemical and photoelectrochemical (PEC) properties of a new photoelectrode based on hematite Co-Fe2O3@NiO, a photoactive semiconductor, was prepared using a process involving a combination of the co-precipitation and microwave-assisted synthesis of Fe2O3, Co-Fe2O3 and Co-Fe2O3@NiO, respectively. The obtained products were characterized by X-Ray powder Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray analysis (EDX), Ultraviolet–Visible (UV–vis) analysis, Fourier Transform Infrared spectroscopy (FT-IR). X-ray diffraction (XRD) pattern of the sample determined the crystal structure of α-Fe2O3 nanoparticles. The SEM image shows spherical nanoparticles. FTIR spectrospy spectrum confirmed the phase purity and chemical bond for the sample. Optical studies show a variation of band gap from 2.118 to 2.07 eV. The electrochemical and photoelectrochemical (PEC) performance of the films were examined by cyclic voltammetry, linear sweep voltammetry and chronoamperometry. The electrochemical oxidation of water achieved by Cobalt-doped Fe2O3@ GCE modified electrode exhibited the current density of 21 mA/g at 0.5 V vs. SCE for 5 at% of Co and reveals enhanced specific capacitance of 352.11 F/g. The catalytic performance of urea oxidation was measured by cyclic voltammetry on Co-Fe2O3@NiO nanoparticles modified glassy carbon electrode (GCE) in alkaline medium. The electrode Co-Fe2O3@NiO without annealing showed a peak current density of 1.59 mA/cm2 at 0.1 M urea in 1.0 M NaOH, which was 3.6 fold higher than that of Co-Fe2O3@NiO with annealing. In another part, this work reported the photoelectrochemical (PEC) properties of photoanode prepared by spin coating. The highest photocurrent 0.042 mA/cm2 at 0.5 V Vs SCE was obtained for 5% Co-Fe2O3@NiO while the photocatalytic oxidation of urea.
        5,100원
        8.
        2022.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.
        4,000원
        9.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silver/graphene core/shell nanocomposites were synthesized through a one-step electric explosion of wire method using only silver wires and ethanol. The morphology of the graphene shell structures can be easily formed by alternating the solvent from deionized water to ethanol. Transmission electron microscopy revealed that the size of the prepared silver/graphene core/ shell nanocomposites was in the 10–110 nm range. The Raman spectra showed the formation of graphene shells on silver. A possible formation mechanism of the silver/graphene core/shell nanocomposites is proposed in this study. The crystallinity of the nanoparticles was investigated via X-ray diffraction. The graphene on the surfaces of the nanocomposites containing functional groups was analyzed through Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses. Zeta potential and dynamic light scattering analyses were performed to determine the dispersion characteristics of the nanocomposites when redispersed in other solvents.
        4,000원
        10.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.
        4,000원
        12.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for SiO2@Au core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.
        4,000원
        13.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Core/shell CdSe/ZnS quantum dots (QDs) are synthesized by a microfluidic reactor-assisted continuous reactor system. Photoluminescence and absorbance of synthesized CdSe/ZnS core/shell QDs are investigated by fluorescence spectrophotometry and online UV-Vis spectrometry. Three reaction conditions, namely; the shell coating reaction temperature, the shell coating reaction time, and the ZnS/CdSe precursor volume ratio, are combined in the synthesis process. The quantum yield of the synthesized CdSe QDs is determined for each condition. CdSe/ZnS QDs with a higher quantum yield are obtained compared to the discontinuous microfluidic reactor synthesis system. The maximum quantum efficiency is 98.3% when the reaction temperature, reaction time, and ZnS/CdSe ratio are 270℃, 10 s, and 0.05, respectively. Obtained results indicate that a continuous synthesis of the Core/shell CdSe/ZnS QDs with a high quantum efficiency could be achieved by isolating the reaction from the external environment.
        4,000원
        14.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost SiO2 spheres to rareearth phosphor (YVO4:Eu3+, YVO4:Er3+, and YVO4:Nd3+) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The SiO2 sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core–shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of SiO2 nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of Eu3+, Er3+, and Nd3+. Moreover, the photoluminescent properties of the core–shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost SiO2 for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.
        4,000원
        15.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 CeO2 표면에 Ti(SO4)2의 가수 분해를 이용하여 TiO2를 성장시켜 코어-쉘 구조를 가지는 세라믹 나노입자를 합성 하였다. CeO2/TiO2 코어-쉘 합성에서는 CeO2:TiO2의 몰비, 반응 시간, 반응 온도, CeO2 슬러리 농도, Ti(SO4)2의 pH 조절을 통하여 코어-쉘 구조를 가지는 최적의 합성 조건을 찾았다. CeO2:TiO2의 최적의 몰비는 1:0.2~1.1, 최적의 반응 시간은 24 시간, 최적의 CeO2 슬러리 농도는 1%, 최적의 반응 온도는 50℃임을 알 수 있었다. NH4OH 수용액을 이용하여 Ti(SO4)2 의 pH를 1로 맞추어 CeO2 슬러리에 적하하면 10%의 농도를 가지는 CeO2 슬러리에서도 CeO2/TiO2 코어-쉘 나노 입자를 합성할 수 있었다. 80℃이상의 높은 온도에서 반응을 시키면 CeO2/TiO2 코어-쉘 구조가 아닌 독립된 TiO2 나노 입자를 형성함을 알 수 있었다. 최적의 반응 온도는 50℃로서 가장 좋은 구조의 CeO2/TiO2 코어-쉘이 합성되었다.
        4,000원
        16.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, simple chemical synthesis of green emitting Cd-free InP/ZnS QDs is accomplished by reacting In, P, Zn, and S precursors by one-pot process. The particle size and the optical properties were tailored, by controlling various experimental conditions, including [In]/[MA] (MA: myristic acid) mole ratio, reaction temperature and reaction time. The results of ultraviolet–visible spectroscopy (UV-vis), and of photoluminescence (PL), reveal that the exciton emission of InP was improved by surface coating, with a layer of ZnS. We report the correlation between each experimental condition and the luminescent properties of InP/ZnS core/shell QDs. Transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques were used to characterize the as-synthesized QDs. In contrast to core nanoparticles, InP/ZnS core/shell treated with surface coating shows a clear ultraviolet peak. Besides this work, we need to study what clearly determines the shell kinetic growth mechanism of InP/ZnS core shell QDs.
        4,000원
        17.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.
        4,000원
        18.
        2016.12 구독 인증기관 무료, 개인회원 유료
        CdSe/CdZnS core/shell/lignad 구조를 가지는 red quantum dot을 발광층으로 사용하여 indium tin oxide(양전 극) glass위에 molybdeum oxide (MoO3), Poly(9-vinylcarbazole)(PVK), CdSe/CdZnS quantum dot, Zinc Oxide (ZnO)을 순차적으로 스핀코팅을 하고, aluminium(Al)(음전극)을 진공 열증착을 통해 다층구조를 제작하여 연구를 진 행하였다. 본 연구에 사용된 quantum dot의 PL peak는 625 nm으로 관찰되었다. 제작된 소자는 약 7 V에서 발광하 기 시작하였으며, 이를 소자의 turn-on voltage로 판단하였다. 인가전압이 증가할수록 소자의 전류밀도와 휘도의 지수 함수적 증가를 관찰할 수 있었다. EL 스펙트럼의 peak는 11 V에서 627 nm이다가, 최대 동작전압인 19 V에서는 630 nm로 red shift 하였다. 소자의 최대 밝기는 210 cd/m2, 최대 전류밀도는 33 mA/cm2, 최대 전류효율은 0.5 cd/A로 측 정되었다.
        4,000원
        19.
        2016.03 구독 인증기관 무료, 개인회원 유료
        CdSe/CdZnS core/shell/lignad 구조를 가지는 red quantum dot을 이용하여 indium tin oxide(양전극) glass 위에 poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS), CdSe/CdZnS quantum dot, 2,2,2"-(1,3,5-Benzinetriyl)-tris (1-phenyl-1-H-benzimidazole) (TPBi)을 순차적으로 스핀코팅을 하고, aluminium(Al) (음전극)을 진공 열증착 통해 다층구조를 제작하여 연구를 진행하였다. 본 연구에 사용된 quantum dot의 PL 측정과 흡수스펙트럼 측정을 통해 644 nm에서 PL peak가 나타나고, 602 nm에서 흡수 peak를 관찰할 수 있었다. 제작된 소 자는 8 V에서 발광하기 시작하여, 이는 turn-on voltage로 판단하였다. 전압이 증가함에 따라 전류밀도와 휘도가 지 수함수적인 증가를 보였다. 스펙트럼의 peak는 11 V에서 629 nm이다가, 최대 동작전압인 17 V에서는 645 nm로 red shift하였고, 반치폭 또한 11 V에서 44.6 nm이다가 17 V에서는 52.3 nm로 넓어지는 것을 관찰할 수 있었다. 스펙트 럼의 변화에 따라 색좌표도 변화하는 것을 관찰할 수 있었다.
        4,000원
        20.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        BaTiO3-coated Fe nanofibers are synthesized via a three-step process. α-Fe2O3 nanofibers with an average diameter of approximately 200 nm are first prepared using an electrospinning process followed by a calcination step. The BaTiO3 coating layer on the nanofiber is formed by a sol-gel process, and a thermal reduction process is then applied to the core-shell nanofiber to selectively reduce the α-Fe2O3 to Fe. The thickness of the BaTiO3 shell is controlled by varying the reaction time. To evaluate the electromagnetic (EM) wave-absorbing abilities of the BaTiO3@Fe nanofiber, epoxy-based composites containing the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss increases to the high frequency region without any degradation. Our results demonstrate that the BaTiO3@Fe nanofibers obtained in this work are attractive candidates for electromagnetic wave absorption applications.
        4,000원
        1 2 3