검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To solve the problem of water pollution, researchers have proposed a photocatalytic degradation technology, in which the key factor is the development of efficient photocatalytic materials. Graphitic carbon nitride (g-C3N4), an n-type semiconductor, has been widely studied due to its suitable band gap (2.7 eV), low cost, easy preparation, non-toxicity, and high photostability. However, the pure-phase g-C3N4 still has defects such as low specific surface area, insufficient visible light absorption, low charge mobility, few active sites for interfacial reaction, and easy recombination of photogenerated electron–hole pairs, which leads to the lower photocatalytic activity of g-C3N4. Aiming at the problems mentioned above, this paper focus on the synthesis of g-C3N4-based composites with high photocatalytic activity via lemon juice induction method. Thiourea and lemon juice were selected as precursors, and carbon quantum dots (CQDs) as electron mediators were introduced anchoring on the surface of g-C3N4 to build g-C3N4/CQDs with compact interface. The results showed that small-sized CQDs are uniformly distributed on the surface of g-C3N4, and the g-C3N4/CQDs composite has a 2D0D structure, which reduces the recombination of photogenerated electron–hole pairs. The photocatalytic degradation efficiency of 4% g-C3N4/CQDs for RhB reaches the highest data of 90.9%, and the photocatalytic degradation rate is 0.016 min− 1, which is about 2.3 times that of g-C3N4. After four cycles of photocatalytic reaction, the photocatalytic degradation efficiency of the material remained at 81.7%. Therefore, the g-C3N4/CQDs synthesized via lemon juice induction has a more stable microstructure, and the charge separation efficiency is greatly improved, which is suitable for practical photocatalytic environmental protection.
        4,300원
        2.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon quantum dots (CQDs) as a rising class of carbon family have gained widespread attention in view of their multiple properties such as great photoluminescence (PL) properties, facile synthesis route, needing economical and cheap raw material, high physiochemical stability, and simple functionalization. This makes CQDs highly versatile and with potential for different applications. To date, CQDs-enabled photocatalysts are regarded as one of the most efficient technologies to degrade pollutants in water; however, poor activity under visible light and the recombination of photogenerated electron and hole pairs hinder getting an ideal performance that may be applied on a large scale. Conventional techniques have been modified via a new advanced method. In this review, we highlighted the strategies to improve the activity of conventional semiconductor photocatalysis via coupling with CQDs, and strategies to improve the photocatalytic activity such as functionalization, doping, and Z-scheme heterojunctions were discussed in detail. This review also covered the CQDs heterojunction application in pollutant degradation and discussed several examples with high-performance photocatalytic activity.
        5,100원