검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 123

        1.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 oC for 6 h, followed by water cooling, and samples were artificially aged in air at 180 oC and 220 oC for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 oC and above 300 oC, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 oC and 400 oC, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 oC and 400 oC was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.
        4,000원
        2.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.
        4,000원
        3.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earthabundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 oC to 540 oC during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.
        4,000원
        5.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using first-principles theory, this work investigated the Cu-doping behavior on the N-vacancy of the C3N monolayer and simulated the adsorption performance of Cu-doped C3N (Cu–C3N) monolayer upon two dissolved gases ( H2 and C2H2). The calculations meant to explore novel candidate for sensing application in the field of electrical engineering evaluating the operation status of the transformers. Our results indicated that the Cu dopant could be stably anchored on the N- vacancy with the Eb of − 3.65 eV and caused a magnetic moment of 1 μB. The Cu–C3N monolayer has stronger performance upon C2H2 adsorption than H2 give the larger Ead, QT and change in electronic behavior. The frontier molecular orbital (FMO) theory indicates that Cu–C3N monolayer has the potential to be applied as a resistance-type sensor for detection of such two gases, while the work function analysis evidences its potential as a field-effect transistor sensor as well. Our work can bring beneficial information for exploration of novel sensing material to be applied in the field of electrical engineering, and provide guidance to explore novel nano-sensors in many fields.
        4,000원
        6.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.
        4,000원
        7.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/ Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 cm2/Vs and low resistivity and sheet resistance of 3.58*10−5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65% in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51% efficiency by improving the short-circuit current density and fill factor to 27.7 mV/cm2 and 62 %, respectively.
        4,000원
        8.
        2020.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO thin films are of considerable interest because they can be customized by various coating technologies to have high electrical conductivity and high visible light transmittance. Therefore, ZnO thin films can be applied to various optoelectronic device applications such as transparent conducting thin films, solar cells and displays. In this study, ZnO rod and thin films are fabricated using aqueous chemical bath deposition (CBD), which is a low-cost method at low temperatures, and environmentally friendly. To investigate the structural, electrical and optical properties of ZnO for the presence of citrate ion, which can significantly affect crystal form of ZnO, various amounts of the citrate ion are added to the aqueous CBD ZnO reaction bath. As a result, ZnO crystals show a nanorod form without citrate, but a continuous thin film when citrate is above a certain concentration. In addition, as the citrate concentration increases, the electrical conductivity of the ZnO thin films increases, and is almost unchanged above a certain citrate concentration. Cu(In,Ga)Se2 (CIGS) solar cell substrates are used to evaluate whether aqueous CBD ZnO thin films can be applicable to real devices. The performance of aqueous CBD ZnO thin films shows performance similar to that of a sputter-deposited ZnO:Al thin film as top transparent electrodes of CIGS solar cells.
        4,000원
        9.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 oC. The specimen is then sintered for 1h at 500 oC. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.
        4,000원
        10.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters – the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT – to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.
        4,000원
        12.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned TiO2 nanotube (NT) electrodes. The highly uniform TiO2 NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of TiO2 NT electrodes
        3,000원
        13.
        2018.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        MA Al alloys are examined to determine the effects of alloying of Mg and Cu and rolling on tensile deformation behavior at 748 K over a wide strain rate range(10−4-103/s). A powder metallurgy aluminum alloy produced from mechanically alloyed pure Al powder exhibits only a small elongation-to-failure(εf < ~50%) in high temperature(748 K) tensile deformation at high strain rates( = 1-102/s). εf in MA Al-0.5~4.0Mg alloys increases slightly with Mg content(εf = ~140% at 4 mass%). Combined addition of Mg and Cu(MA Al-1.5%Mg-4.0%Cu) is very effective for the occurrence of superplasticity(εf > 500%). Warm-rolling(at 393-492 K) tends to raise εf. Lowering the rolling-temperature is effective for increasing the ductility. The effect is rather weak in MA pure Al and MA Al-Mg alloys, but much larger in the MA Al-1.5%Mg-4.0%Cu alloy. Additions of Mg and Cu and warm-rolling of the alloy cause a remarkable reduction in the logarithm of the peak flow stress at low strain rates ( < ~1/s) and sharpening of microstructure and smoothening of grain boundaries. Additions of Mg and Cu make the strain rate sensitivity(the m value) larger at high strain rates, and the warm-rolling may make the grain boundary sliding easier with less cavitation. Grain boundary facets are observed on the fracture surface when εf is large, indicating the operation of grain boundary sliding to a large extent during superplastic deformation.
        4,000원
        14.
        2018.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni- 0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at 200-900 oC. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of 800 oC. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at 500-700 oC is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at 400 oC. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.
        4,000원
        16.
        2018.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of annealing temperature on the microstructure and mechanical properties through thickness of a cold-rolled Cu-3.0Ni-0.7Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5h at 200~900 oC. The microstructure of the copper alloy after annealing was different in thickness direction depending on an amount of the shear and compressive strain introduced by rolling; the recrystallization occurred first in surface regions shear-deformed largely. The hardness distribution of the specimens annealed at 500~700 oC was not uniform in thickness direction due to partial recrystallization. This ununiformity of hardness corresponded well with an amount of shear strain in thickness direction. The average hardness and ultimate tensile strength showed the maximum values of 250Hv and 450MPa in specimen annealed at 400 oC, respectively. It is considered that the complex mode of strain introduced by rolling effected directly on the microstructure and the mechanical properties of the annealed specimens.
        4,000원
        17.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A Nanosized WO3 and CuO powder mixture is prepared using novel high-energy ball milling in a bead mill to obtain a W-Cu nanocomposite powder, and the effect of milling time on the structural characteristics of WO3-CuO powder mixtures is investigated. The results show that the ball-milled WO3-CuO powder mixture reaches at steady state after 10 h milling, characterized by the uniform and narrow particle size distribution with primary crystalline sizes below 50 nm, a specific surface area of 37 m2/g, and powder mean particle size (D50) of 0.57 μm. The WO3-CuO powder mixtures milled for 10 h are heat-treated at different temperatures in H2 atmosphere to produce W-Cu powder. The XRD results shows that both the WO3 and CuO phases can be reduced to W and Cu phases at temperatures over 700oC. The reduced W-Cu nanocomposite powder exhibits excellent sinterability, and the ultrafine W-Cu composite can be obtained by the Cu liquid phase sintering process.
        4,000원
        18.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the microstructural and magnetic property changes of DyH2, Cu + DyH2, and Al + DyH2 diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusiontreated magnets increases with increasing heat treatment temperature except at 910oC, where it decreases slightly. Moreover, at 880oC, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed DyH2-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only DyH2. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of 790-880oC. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed DyH2, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic (Nd, Dy)2Fe14B phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.
        4,000원
        19.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 구리 아연 금속합금의 산화 환원 반응과 합성 알루미늄 실리케이트의 흡착 반응을 이용한 폐수 중 중금속 처리에 관한 연구이다. 극세사 형태로 제조된 구리 아연 금속합금이 수용액 중에 서 산화 환원반응에 의해 아연보다 이온화 경향이 작은 중금속은 환원 처리되고, 이온화 된 아연 및 미 반응 중금속은 흡착 처리하여 제거하는 연구이다. 극세사 형태로 제조된 금속합금 물질은 표면적이 커서 1회 처리만으로도 반응 평형에 도달하게 하여 효율이 높은 것으로 나타났다. 크롬(Cr+3)은 redox 반응 1 회 처리만으로도 100.0 % 제거 되었으며, 수은은 98.0 %, 주석 92.0 %, 구리는 91.4 % 정도 제거되었 다. 카드뮴, 니켈, 납도 각각 40.0 %, 50.0 %, 58.0 %가 제거 되었다. 크롬(Cr+3)은 아연과 이온화 경향 차이가 거의 없지만 제거 효율이 높은 것으로 나타났는데 이는 3가 크롬은 이온 상태로 존재하면 redox 반응에서 발생한 OH- 이온과 결합하여 수산화물 침전을 형성하는 것으로 판단된다. Redox 반응 후 증 가한 아연 및 미반응 중금속 농도를 알루미늄실리케이트를 1회 통과하여 거의 100.0 % 제거할 수 있었 다. 이는 합성 알루미늄 실리케이트의 비표면적이 크고 금속 이온의 흡착능력이 우수한 것으로 나타났으 며, 반응 후 알루미늄 이온은 증가하지 않는 것으로 보아 이온 교환이 아닌 흡착으로 아연 및 중금속 이 온들을 제거할 수 있는 것으로 나타났다.
        4,000원
        20.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.
        4,000원
        1 2 3 4 5