검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2018.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni- 0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at 200-900 oC. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of 800 oC. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at 500-700 oC is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at 400 oC. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.
        4,000원
        2.
        2018.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of annealing temperature on the microstructure and mechanical properties through thickness of a cold-rolled Cu-3.0Ni-0.7Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5h at 200~900 oC. The microstructure of the copper alloy after annealing was different in thickness direction depending on an amount of the shear and compressive strain introduced by rolling; the recrystallization occurred first in surface regions shear-deformed largely. The hardness distribution of the specimens annealed at 500~700 oC was not uniform in thickness direction due to partial recrystallization. This ununiformity of hardness corresponded well with an amount of shear strain in thickness direction. The average hardness and ultimate tensile strength showed the maximum values of 250Hv and 450MPa in specimen annealed at 400 oC, respectively. It is considered that the complex mode of strain introduced by rolling effected directly on the microstructure and the mechanical properties of the annealed specimens.
        4,000원
        3.
        2016.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.
        4,000원
        4.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Cu-10Sn and Cu-10Sn-2Ni-0.2Si alloys have been manufactured by spray casting in order to achieve a fine scale microstructure and high tensile strength, and investigated in terms of microstructural evolution, aging characteristics and tensile properties. Spray cast alloys had a much lower microhardness than continuous cast billet because of an improved homogenization and an extended Sn solid solubility. Spray cast Cu-Sn-Ni-Si alloy was characterized by an equiaxed grain microstructure with a small-sized (Ni, Si)-rich precipitates. Cold rolling of Cu-Sn-Ni-Si alloy increased a tensile strength to 1220 MPa, but subsequent ageing treatment reduced a ultimate tensile strength to 780 MPa with an elongation of 18%.
        4,000원
        5.
        1994.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        강도, 소전율, 스프링성, 내열성 및 굽힘 가공성등의 적절한 조화를 갖는 콘넥팅재료를 개발하기 위하여 Cu-Ni-Si-P합금에 대하여 연구하였다. Ni와 Si의 조성을 달리한 3종류의 합금을 용해, 주조하여 약 900˚C에 열간압연 후 수냉하고, 그 후 냉간압연하여 450˚C. 500˚C 및 550˚C에서 시효처리한 후 기계적 성질 변화와 도전율 등을 조사하였다. 고강도와 고존도율의 적절한 조화를 나타내는 Cu-2.7%Ni-0.53% Si-0.029%P 합금을 만들었다. 합금 1을 0.5mm두께의 콘넥팅재료로 가공한 후 여러가지 특성은 인청동(C 5210R-H)과 황동(C2600R-EH)에 비해 우수한 것으로 평가되었다.
        4,200원