검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 440

        21.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Zero-waste pattern cutting is a groundbreaking sustainable fashion practice. However, few brands and designers have pursued this method because it requires creative pattern design that diverges from the existing process of using pattern slopers. Therefore, application within the fashion industry is not sufficient. Therefore, in an attempt to highlight the key characteristics of zero-waste pattern design, this study classifies and analyzes cases in which similar designs employ zero-waste pattern-cutting techniques. We hope to make zero-waste pattern design more accessible by presenting realistic pattern-cutting guidelines. To this end, theoretical research on relevant literature, previous research, and online resources and an empirical analysis of cases involving zero-waste pattern cutting were conducted in parallel. As a result of the study, we were able to classify the factors of zero-waste pattern design in terms of fabric use, design, and composition. Regarding materials, our research revealed the importance of appropriate fabric width, understanding the difference between waste minimization and minimal fabric use, and easy reuse and recycling. In terms of design, the simultaneous progress of pattern and design work, adjustable loose silhouettes, and the use of surplus fabric for functional and decorative details emerged as key characteristics. For composition, we found that size adjustment limits, arrangement irregularity, and pattern shapes were crucial elements and that various arrangements revealed unlimited design potential.
        4,900원
        22.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, halogen lamps for vehicle exterior lamp systems are being replaced by LEDs (Light Emitting Diode) in consideration of miniaturization, power consumption, life, luminance, and eco-friendliness. Due to regulations on the amount of light required, luminance, light uniformity, and glare prevention, it is required to develop a light guide for controlling a light source of an LED lamp for a vehicle. For the development of the light guides, the development of machining technology that can cut micro patterns of hundreds of micrometers scale into surface roughness of tens of nanometers scale must be preceded. In this study, the effect of variations in cutting conditions on surface roughness was analyzed through experiments. The micro patterns was manufactured by cutting into STAVAX material, and the surface of the micro patterns was super-finished using a ball-shaped PCD (polycrystalline diamond) tool without flutes. In experiments, the cutting conditions of the super-finishing process were varied, and the varied cutting conditions were feed rate, radial depth of cut, and spindle speed
        4,000원
        27.
        2022.10 구독 인증기관·개인회원 무료
        This study presents an example of creating and optimizing a task sequence required in an automated remote dismantling system using a digital manufacturing system. An automated remote dismantling system using a robotic arm has recently been widely studied to improve the efficiency and safety of the dismantling operations. The task sequence must be verified in advance through discrete eventbased process simulation in a digital manufacturing system to avoid problems in actual remote cutting operations as the main input of the automated remote dismantling system. The laser cutting method can precisely cut complicated target structures such as reactor internals with versatility, but a robot and a pre-prepared program are required to deploy sophisticated motion of the laser cutting head on the target structure. For safe and efficient dismantling operations, the robot’s program must be verified in advance in a virtual environment that can represent the actual dismantling site. This study presents creating and optimizing the task sequence of a robotic underwater laser cutting as part of the project of developing an automated remote dismantling system. A task sequence is created to implement the desired cutting path for the target structure using the automated remote dismantling system in the virtual environment. The task sequence is optimized for the posture of the laser cutting head and the robot to avoid collisions during the operation through discrete event-based process simulation since the target structure is complicated and the volume occupied by the laser cutting head and the robot arm is considerably large. The task sequence verified in the digital manufacturing system is demonstrated by experiments cutting the target structure along the desired cutting path without any problems. The various simulation cases presented in this study are expected to contribute not only to the development of the automated remote dismantling system, but also to the establishment of a safe and efficient dismantling process in the nuclear facility decommissioning.
        28.
        2022.10 구독 인증기관·개인회원 무료
        The RPV internal structure is a high radio activated part and has very complex geometry. Therefore, it needs to be cut remotely with an automated cutting system to minimize the worker exposures. To do so, we made up the remote laser cutting system with a laser cutter, robot manipulator and control software system and the laser cutter is moved by the robot manipulator based on the command from the control software system. A laser cutter is required to keep the desired standoff position between the nozzle of the laser cutter and surface of the cut target model to cut properly. Moreover, in the remote cutting process, an exact time and sequence control of the air supply and the laser emission is required for the cutting quality and the process safety. In this study, we proposed the PERT chart-based process execution and control methodology. The PERT chart is a graph which is represented by nodes and edges. The node of the PERT chart has the information about the activity details such as activity type, execution time and related device. Using the edge we make the sequence of the desired activity execution. A PERT chart of the cutting scenario is compiled in the control software system to creates data and thread structure to operate the physical device. We built software architecture to interpret and execute the PERT chart efficiently in the digital simulation platform which enables us to use existing pre-built simulation scenario for the laser cutting process. In addition, we have tested various laser cutting test cases in our test bed to verify the performance of our system. The test bed environment has the shape of the RPV internal structure and is placed under water.
        29.
        2022.10 구독 인증기관·개인회원 무료
        For highly contaminated elements such as reactor pressure vessels or reactor internals, it is a viable option to cool-down and dismantle these elements in submerged (e.g. underwater) state. Several tools and processes such as saw cutting, water jet cutting or plasma cutting are currently used for underwater cutting, with each of them having their own advantages and disadvantages. The main disadvantage of these existing methods, especially saw and water jet cutting, is the generation of secondary waste that then needs to be filtered out of the water. In addition, in the case of water jet cutting, a considerable amount of abrasive material is added, which must also be stored. To overcome this drawback, the feasibility of using laser cutting under water to minimize secondary waste production has been actively studied recently. One of the challenges with the underwater laser cutting is to visually monitor the cutting process. Flowing air bubbles generated by the cutting gas and the flashing light emitted from the laser and melting material prohibit visual monitoring of the cutting process. This study introduces a method to enhance the video from a monitoring camera. Air bubbles can be detected by computing optical flows and the video quality can be enhanced by selective removal of the detected bubbles. In addition, suppressing the frame image update from flashing light area can also effectively enhance the video quality. This paper describes the simple yet effective video quality enhancement method and reports preliminary results.
        30.
        2022.10 구독 인증기관·개인회원 무료
        When decommissioning a nuclear power plant, the structure must be made to a disposable size. In general, the cutting process is essential when dismantling a nuclear power plant. Mainly, thermal cutting method is used to cutting metal structures. The aerosols generated during thermal cutting have a size distribution of less than 1 μm. The contaminated structures are able to generate radioactive aerosols in the decommissioning. Radioactive aerosols of 1 μm or less are deposited in the respiratory tract by workers’ breathing, causing the possibility of internal exposure. Therefore, workers must be protected from the risk of exposure to radioactive aerosols. Prior knowledge of aerosols generated during metal cutting is important to ensure worker safety. In this study, the physical and chemical properties of the aerosol were evaluated by measuring the number and mass concentrations of aerosols generated when cutting SUS304 and SA508 using the laser cutting method. High-resolution aerosol measuring equipment (HR-ELPI+, DEKATI) was used to measure the concentration of aerosols. The HR-ELPI+ is an impactor-type aerosol measuring equipment that measures the aerosol number concentration distribution in the aerodynamic diameter range of 6 nm to 10 um in real-time. And analyze the mass concentration of the aerosol according to the diameter range through the impactor. ICP-MS was used for elemental mass concentration analysis in the aerosol. Analytical elements were Fe, Cr, Ni and Mn. For the evaluation of physical and chemical properties, the MMAD of each element and CMAD were calculated in the aerosol distribution. Under the same cutting conditions, it was confirmed that the number concentration of aerosols generated from both materials had a uni-modal distribution with a peak around 0.1 um. CMAD was calculated to be 0.072 um for both SUS304 and SA508. The trend of the CMAD calculation results is the same even when the cutting conditions are changed. In the case of MMAD, it was confirmed that SUS304 had an MMAD of around 0.1 μm in size for only Fe, Cr and Mn. And SA508, Fe, Cr, Ni and Mn were all confirmed to have MMAD around 0.1 μm in size. The results of this study show that a lot of aerosols in the range of less than 1 μm, especially around 0.1 μm in size, are generated when metal is cut using laser cutting. Therefore, in order to protect the internal exposure of workers to laser metal cutting when decommissioning NPPs, it is necessary to protect from nano-sized aerosols beyond micron size.
        31.
        2022.10 구독 인증기관·개인회원 무료
        The decommissioning process of Kori Nuclear Power Plant No.1, which was permanently suspended in 2017, various studies and attention on the decommissioning of nuclear power plants and waste management are being focused. In particular, decommissioning of high-risk facilities should take into account both safety and economic aspects. Small defects in the decommissioning process may lead to major disasters, and the resulting economic losses will cause enormous damage at the national level. In order to prevent such damage, various decommissioning process simulations within a virtual environment should be performed, and process errors and results should be collected and analyzed through simulation to derive the optimal decommissioning scenario as possible. The platform introduced in this paper builds a virtual environment based on drawing and modeling data of Kori Nuclear Power Plant No.1 and automatically creates an optimized cutting path for dismantling the facility and internal structure, and simulates a cutting process similar to reality using Robot Arm. In addition, it is possible to derive and analyze a cutting process scenario by processing process results such as time required for work and cutting distance collected through simulation.
        33.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.
        4,200원
        34.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박의 건조공정 중 강재의 절단과 곡 가공, 용접에 있어 화염의 사용은 필수적이다. 현재 조선소의 강재 절단과 가공 과정에서 는 아세틸렌이 화염 연료로 가장 많이 사용되고 있지만, 폭발 사고의 위험성과 상대적으로 적은 발열량의 한계로 최근에는 프로판 연료의 활용이 증가하고 있다. 하지만 프로판 연료는 상대적으로 가공 속도가 느리고, 가공 시 슬래그의 발생빈도가 높아 품질이 저하된다. 대체 연료로써 프로필렌이 주목받으며 가공 속도와 품질향상에 대한 기대가 증가하고 있다. 프로필렌은 발열량이 우수한 연료로 강재 가공 간 생산성과 가공 품질의 우수성을 갖추고 있다. 이에 본 논문에서는 프로판, 프로필렌 화염을 이용한 철판 가공 시 각 연료의 연소 특성을 분 석 및 비교하였다. 프로필렌 화염을 이용한 철판 가공 시 배출되는 온실가스와 유해가스를 프로판 연료의 배출량과 비교하여 저감효과를 실험적으로 확인하였다. 또한, 가공 연료에 따른 입열량이 선박용 강재의 기계적 강도 변화에 미치는 영향을 알아보기 위해 열 분포실험과 인장시험을 수행하였다. 실험 결과로, 대체 연료인 프로필렌을 사용할 때 프로판 연료에 비해 온도분포가 고르게 나타났다. 기계적 강도 실 험 결과로 인장강도의 저하는 관찰되지 않았으나, 변형률은 감소하는 경향을 보였다. 본 연구의 결과를 바탕으로 향후 실제 조선소의 강재 가공 및 절단과정에 적용하였을 때, 발생하는 문제점에 대한 분석 및 보완연구를 수행할 예정이다.
        4,000원
        35.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        濰坊은 淸후기 金石學의 핵심지역으로 위상이 높아지고, 西 泉王石經은 皖派·浙派와 차별화된 ‘齊魯印派’의 기초를 다지게 된다. 簠齋陳介祺의 5세손인 陳君藻(1901-1987)는 이를 계승해 서예와 전각으로 일가를 이루었는데, 본고에서는 그동안 전혀 논의되지 못했던 그의 전각을 심도있게 고찰해 다음과 같이 유 의미한 성과를 도출해 냈다. 첫째, 현존 印章은 대부분 1949-1966년 사이에 새긴 것으로, 명성에 비해 그 수량이 매우 적다. 그 주요 원인으로, (1) 사람 됨이 孤高超逸하여 俗人을 응대하지 않고, (2) 근엄하고 치밀해 전각을 새기는 시간이 오래 걸리고, (3) 당시 사회가 혼란해 전 각을 중단하고 전란을 피했기 때문이라고 추론했다. 둘째, 淸말기 저명한 금석학자인 陳介祺의 후손으로, 그가 수 집한 자료와 ‘尙古’사상을 계승해 鍾鼎·陶文·封泥·瓦當등의 古 文字자료를 대거 전각에 활용했다. 또한 漢玉印에 대한 模仿 과 借鑒도 남달랐다. 셋째, 王石經은 古典派를 대표하는 인물로, 陳介祺의 ‘尙古’사 상을 계승해 ‘以書入印’을 실현했다. 陳君藻는 王石經과 그의 아들 王幼泉에게 전각을 직접 전수받아 그 맥을 이었다. 한편, 전각의 邊框에서 王石經은 깨끗하면서 완전하지만 陳君藻는 의 식적으로 깨진 흔적을 추구해 차별성을 드러냈다. 이상과 같이 陳君藻의 전각은 陳介祺와 王石經의 ‘尙古’적 印 學사상을 계승하면서도 한편으로는 역대 문물자료에서 새로운 방식을 취하거나 江浙印派의 특징을 수용해 자신의 독창적인 전각특징을 선보이기도 했다.
        8,000원
        36.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        장미의 단일 마디 삽목의 경우 온도, 상대 습도 및 광과 같은 환경 관리가 생산성에 영향을 미친다. 기온과 상대습도가 삽 목 성공률과 묘 소질에 미치는 영향을 조사하기 위해 장미 (Rosa hybrida) ‘Maisie’ 품종과 투명한 플라스틱 박스를 이 용하였으며 인공조명(white LED, PPFD 104.0μmol·m-2·s-1) 을 이용하여 전 기간 밀폐 조건에서 삽목 시 가장 효과적인 소 엽수와 광주기 조건을 구명하고자 하였다. 첫 번째 실험은 밀 폐 기간을 달리하여 총 6주 동안 진행되었다. 밀폐 기간이 길 어질수록 뿌리수와 가장 긴 뿌리의 길이가 감소하였다. 그러 나 밀폐 기간에 따른 생존율, 신초발생률, 발근율에 유의한 차 이가 없었다. 두 번째 실험에서는 삽수 생존율과 신초발생률 이 광주기(0/24, 2/22, 4/20, 8/16, 16/8h)와 삽수 소엽의 개수 (0, 2, 4)에 의해 영향을 받는 것으로 나타났다. 생존율은 명기 16시간, 소엽 4개 처리구에서 가장 높았다. 생존율과 신초발 생률을 에너지 효율과 함께 고려한 결과, 소엽을 2개 또는 4개 붙인 삽수를 이용하여 하루 8시간 광을 조사하는 것이 가장 효 과적인 것으로 판단되었다.
        4,000원
        37.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Percutaneous balloon dilation with or without placement of an external biliary drain is a nonoperative alternative method for treating benign bilioenteric anastomotic strictures. Although this procedure has a high technical success rate, outcomes are less optimal when attempting to dilate refractory tight strictures. For the stricture, cutting balloon can be an option. We present four patients with benign bilioenteric anastomotic strictures refractory to conventional balloon dilation. To the patients, a peripheral cutting balloon over-the-wire system was inflated, following subsequent conventional non-compliant balloon dilation. After the balloon dilation treatment, an external drainage catheter was placed through the stricture site and maintained for up to 30 days. Technical and end-treatment success was achieved in all four patients. In conclusion, the use of cutting balloon dilation may appear to be a safe and effective alternative method of treatment in patients with benign bilioenteric anastomotic strictures refractory to conventional balloon dilation.
        4,000원
        39.
        2022.05 구독 인증기관·개인회원 무료
        Currently, dismantling technology for decommissioning nuclear power plants is being developed around the world. This study describes the cutting technology and one of the technologies being considered for the RV/RVI cutting of Kori Unit 1. The dismantling technology for nuclear power plants include mechanical and thermal methods. Mechanical cutting methods include milling, drill saw, and wire cutting. The advantages of the mechanical method are less generating aerosol and less performance degradation in water. However, the cutting speed is slow and the reaction force is large. Thermal cutting methods use heat sources such as plasma arcs, oxygen, and lasers. The advantages of thermal method are fast cutting speed, low reaction force and thick material cutting. On the other hand, they have problems with fume and melt. Among them, the cutability of the oxygen cutting method is better in carbon steel than in stainless steel. In order to cut the RV/RVI of the Kori Unit 1, the applicability of fine plasma, arc saw, and band/ wheel saw is being reviewed. For RV cutting, the applicability of arc saw and oxy-propane is being considered Because RV is mostly made of carbon steel. However, since the flange is cladded with stainless steel, the use of mechanical methods such as wire saws should be considered. In the case of RVI, since it has a complicated shape and is made of stainless steel, it seems necessary to review various cutting methods. In addition, it will be necessary to minimize radiation exposure of workers by cutting underwater cutting.
        40.
        2022.05 구독 인증기관·개인회원 무료
        When a permanently-closed nuclear power plant is to be decommissioned, large structures targeted to be cut in the process include a steam generator, reactor, and reactor coolant pump (RCP). Although there are sufficient preliminary studies being done on these structures to assess the radiation exposure dose, relatively fewer studies are underway regarding pressurizers. Therefore, preliminary evaluations are required to prevent workers from being overexposed to radiation coming from a pressurizer and to avoid an unnecessary increase in the decommissioning cost. This study created a cutting scenario based on disposal drums for solid radioactive wastes. The cutting scenario was based on 200-liter and 320-liter drums for solid wastes and on the assumption that all cutting operations were done 100 centimeters away from the structure to be cut. When are cutting process of a Pressurizer is carried out per scenario, the 200-liter drum produces 272 pieces, whereas the 320-liter counterpart generates 234 pieces. Given that South Korea allocates 75,550 KRW per liter (based on 200 L) for the disposal cost, an increase in the number of drums leads to an exponential growth of the decommissioning cost, which fuels the need to establish more organized cutting strategies. Meanwhile, in terms of radiation dose, plasma, laser, and flame cutting techniques were estimated to record 0.232 mSv, 0.299 mSv, and 0.213 mSv respectively for 200 L, and 0.195 mSv, 0.251 mSv, and 0.179 mSv respectively for 320 L (based on DF-90). When compared with the annual dose limit of 100 mSv (0.0057 mSv·hr−1), the above numbers registered for both 200 L and 320 L were estimated to satisfy the dose limit, with only a negligible difference in the dose between the two capacities. The results generated from this study are expected to be utilized as a meaningful basis to identify applicable cutting techniques of a pressurizer as part of the decommissioning operation and to establish its cutting plans in compliance with ALARA.
        1 2 3 4 5