검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 348

        41.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Continuous synthesis of high-crystalline carbon nanotubes (CNTs) is achieved by reconfiguring the injection part in the reactor that is used in the floating catalyst chemical vapor deposition (FC-CVD) process. The degree of gas mixing is divided into three cases by adjusting the configuration of the injection part: Case 1: most-delayed gas mixing (reference experiment), Case 2: earlier gas mixing than Case 1, Case 3: earliest gas mixing. The optimal synthesis condition is obtained using design of experiment (DOE) in the design of Case 1, and then is applied to the other cases to compare the synthesis results. In all cases, the experiments are performed by varying the timing of gas mixing while keeping the synthesis conditions constant. Production rate (Case 1: 0.63 mg/min, Case 2: 0.68 mg/min, Case 3: 1.29 mg/min) and carbon content (Case 1: 39.6 wt%, Case 2: 57.1 wt%, Case 3: 71.6 wt%) increase as the gas-mixing level increases. The amount of by-products decreases stepwise as the gas-mixing level increases. The IG/ID ratio increases by a factor of 7 from 10.3 (Case 1) to 71.7 (Case 3) as the gas-mixing level increases; a high ratio indicates high-crystalline CNTs. The radial breathing mode (RBM) peak of Raman spectrograph is the narrowest and sharpest in Case 3; this result suggests that the diameter of the synthesized CNTs is the most uniform in Case 3. This study demonstrates the importance of configuration of the injection part of the reactor for CNT synthesis using FC-CVD.
        4,000원
        42.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 μs after post-deposition annealing (PDA) at 100 oC. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 oC the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 oC, and 5:5 for annealing at 300 oC. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.
        4,000원
        43.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내외로 태풍, 홍수, 화산, 지진, 해일 등의 자연재난에 의하여 인명, 재산 피해가 지속적으로 발생하고 있으며 특히 최근에 는 황사, 미세먼지와 같은 입자상 오염물질의 확산이 가속되고 있어 입자상 물질 확산의 예측 및 대응 기술 대한 요구가 높아지고 있는 실정이다. 이와 같은 입자상 물질 관련 재난에 대응하기 위하여 수치 모델을 사용하여 입자상 물질의 확산 경로 및 농도를 예측하는 연구들을 진행하고 있으며, 본 연구에서는 선행연구로 라그랑지안 모델 중 하나인 PUFF-UAF 모델을 개선하여 개발된 PUFFGaussian 모델을 이용하여 연구를 진행하였다. PUFF-Gaussian 모형을 이용하여 온타케 화산의 분화 결과와 검증을 수행하여 유사한 결과가 도출되는 것을 확인하고 백두산 분화에 대한 화산재 확산 예측을 수행하였다. 또한 국내 17개 시·도에 대하여 기존 PUFF-UAF 모델의 결과를 이용하여 계산한 화산재 발생 확률과 PUFF-Gaussian을 이용하여 계산한 발생 확률에 대한 비교를 수행하고 PUFFGaussian 모델을 이용한 결과가 발생 확률이 더 낮은 것을 확인하였다.
        4,000원
        45.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A basic metal deposition experiment for manufacturing aluminum parts was performed using WAAM (Wire arc additive manufacturing), and the cross-sectional shape of the laminate according to nine deposition conditions. The effect of heat input was analyzed for the bead shape according to the deposition conditions, and the deposition efficiency was calculated by analyzing the cross-sectional shape of thin-wall parts made of aluminum. The amount of heat input was used in the experiment from about 2.7 kJ/cm to 4.5 kJ/cm, and the closer the heat input was to 4.5kJ/cm, the higher the deposition efficiency was. The maximum lamination efficiency obtained through this study reached 76%.
        4,000원
        46.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        AZO thin films are grown on a p-Si(111) substrate by RF magnetron sputtering. The characteristics of various thicknesses and heat treatment conditions are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Hall effect and room-temperature photoluminescence (PL) measurements. The substrate temperature and the RF power during growth are kept constant at 400 ℃ and 200 W, respectively. AZO films are grown with a preferred orientation along the c-axis. As the thickness and the heat treatment temperature increases, the length of the c-axis decreases as Al3+ ions of relatively small ion radius are substituted for Zn2+ ions. At room temperature, the PL spectrum is separated into an NBE emission peak around 3.2 eV and a violet regions peak around 2.95 eV with increasing thickness, and the PL emission peak of 300 nm is red-shifted with increasing annealing temperature. In the XPS measurement, the peak intensity of Al2p and Oll increases with increasing annealing temperature. The AZO thin film of 100 nm thickness shows values of 6.5 × 1019 cm−3 of carrier concentration, 8.4 cm−2/V·s of mobility and 1.2 × 10−2 Ω·cm electrical resistivity. As the thickness of the thin film increases, the carrier concentration and the mobility increase, resulting in the decrease of resistivity. With the carrier concentration, mobility decreases when the heat treatment temperature increases more than 500 ℃.
        4,000원
        49.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon short fibers/copper composites with different carbon short fiber contents up to 15 wt.% as reinforcements are prepared to investigate the influence of the carbon short fiber surface coating on the microstructure, density, and electrical properties of the carbon short fibers/copper composites. The carbon short fibers were surface treated by acid functionalization followed by alkaline treatment before the coating process. It was observed from the results that coated type copper nanoparticles were deposited on the surface of the carbon short fibers. The surface treated carbon short fibers were coated by copper using the electroless deposition technique in the alkaline tartrate bath by using formaldehyde as a reducing agent of the copper sulfate. The produced coated carbon short fibers/copper composite powders were cold compacted at 600 MPa, and then sintered at 875 °C for 2 h under (hydrogen/nitrogen 1:3) atmosphere. A reference copper sample was also prepared by the same method to compare between the properties of pure copper and the carbon short fibers/copper composites. The phase composition, morphology, and microstructure of the prepared carbon short fibers/copper composite powders as well as the corresponding carbon short fibers/copper composites were investigated using X-ray diffraction analysis (XRD) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer (EDS), respectively. The density and the electrical resistivity of the sintered composites were measured. It was observed from the results that the density was decreased; however, the electrical resistivity was increased by increasing the carbon short fibers wt.%.
        4,300원
        50.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The directed energy deposition (DED) process of metal 3D printing technologies has been treated as an effective method for welding, repairing, and even 3-dimensional building of machinery parts. In this study, stainless steel 316L (STS316L) and Inconel 625 (IN625) alloy powders are additively manufactured using the DED process, and the microstructure of the fabricated STS316L/IN625 sample is investigated. In particular, there are no secondary phases in the interface between STS316L and the IN625 alloy. The EDS and Vickers hardness results clearly show compositionally and mechanically transient layers a few tens of micrometers in thickness. Interestingly, several cracks are only observed in the STS 316L rather than in the IN625 alloy near the interface. In addition, small-sized voids 200– 400 nm in diameter that look like trapped pores are present in both materials. The cracks present near the interface are formed by tensile stress in STS316L caused by the difference in the CTE (coefficient of thermal expansion) between the two materials during the DED process. These results can provide fundamental information for the fabrication of machinery parts that require joining of two materials, such as valves.
        4,000원
        51.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study presented in the article is focused on use of graphene obtained by novel microwave-enhanced chemical vapor deposition (MECVD) method as a construction material for 3D porous structures—aerogels and sponges. MECVD graphene nanoplatelets-based aerogels were obtained by mixing MECVD graphene nanoplatelets and chitosan, dissolved in 3% acetic acid followed by its freeze drying and carbonization at 800° in inert medium. Surface morphology of aerogels was characterized by SEM. MECVD graphene nanoplatelets-based aerogels are characterized by a porous structure; they are superhydrophobic and possess high sorption capacity with regard to organic liquids of different densities. Polyurethane sponges coated with MECVD graphene can serve as an alternative to aerogels. The process of their obtaining is cheaper and less complicated. They were obtained by facile “dip-coating” method, modifying its surface to increase its hydrophobicity. The resulting sponges are superhydrophobic and superoleophilic, and demonstrate high rate of sorption of organic liquids and can be easily regenerated by squeezing. In addition, they can be used as a separating material in conjunction with vacuum system for continuous and selective collection of organic liquids from the surface of water.
        4,300원
        52.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.
        4,000원
        53.
        2019.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Molybdenum is a low-resistivity transition metal that can be applied to silicon devices using Si-metal electrode structures and thin film solar cell electrodes. We investigate the deposition of metal Mo thin film by plasma-enhanced atomic layer deposition (PE-ALD). Mo(CO)6 and H2 plasma are used as precursor. H2 plasma is induced between ALD cycles for reduction of Mo(CO)6 and Mo film is deposited on Si substrate at 300℃. Through variation of PE-ALD conditions such as precursor pulse time, plasma pulse time and plasma power, we find that these conditions result in low resistivity. The resistivity is affected by Mo pulse time. We can find the reason through analyzing XPS data according to Mo pulse time. The thickness uniformity is affected by plasma power. The lowest resistivity is 176 μΩ·cm at Mo(CO)6 pulse time 3s. The thickness uniformity of metal Mo thin film deposited by PE-ALD shows a value of less than 3% below the plasma power of 200 W.
        4,000원
        55.
        2019.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) has versatile and intriguing properties, such as wide direct bandgap, high thermal conductivity, good thermal and chemical stability, and various functionalities. Due to these properties, AlN thin films have been applied in various fields. However, AlN thin films are usually deposited by high temperature processes like chemical vapor deposition. To further enlarge the application of AlN films, atomic layer deposition (ALD) has been studied as a method of AlN thin film deposition at low temperature. In this mini review paper, we summarize the results of recent studies on AlN film grown by thermal and plasma enhanced ALD in terms of processing temperature, precursor type, reactant gas, and plasma source. Thermal ALD can grow AlN thin films at a wafer temperature of 150~550 oC with alkyl/amine or chloride precursors. Due to the low reactivity with NH3 reactant gas, relatively high growth temperature and narrow window are reported. On the other hand, PEALD has an advantage of low temperature process, while crystallinity and defect level in the film are dependent on the plasma source. Lastly, we also introduce examples of application of ALD-grown AlN films in electronics.
        4,200원
        56.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Atomic layer deposition (ALD) is widely used as a tool for the formation of near-atomically flat and uniform thin films in the semiconductor and display industries because of its excellent uniformity. Nowadays, ALD is being extensively used in diverse fields, such as energy and biology. By controlling the reactivity of the surface, either homogeneous or inhomogeneous coating on the shell of nanostructured powder can be accomplished by the ALD process. However, the ALD process on the powder largely depends on the displacement of powder in the reactor. Therefore, the technology for the fluidization of the powder is very important to redistribute its position during the ALD process. Herein, an overview of the three types of ALD reactors to agitate or fluidize the powder to improve the conformality of coating is presented. The principle of fluidization its advantages, examples, and limitations are addressed.
        4,000원
        57.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[Mo(CO)6] as precursor and ozone(O3) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the Mo6+ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from 576 oC to 620 oC at 250 g/Nm after post-deposition annealing at 350 oC in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.
        4,000원
        58.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study examines paraelectric Bi1.5Zn1.0Nb1.5O7 (BZN), which has no hysteresis and high dielectric strength, for energy density capacitor applications. To increase the breakdown dielectric strength of the BZN film further, poly(vinylidene fluoride) BZN-PVDF composite film is fabricated by aerosol deposition. The volume ratio of each composition is calculated using dielectric constant of each composition, and we find that it was 12:88 vol% (BZN:PVDF). To modulate the structure and dielectric properties of the ferroelectric polymer PVDF, the composite film is heat-treated at 200 oC for 5 and 30 minutes following quenching. The amount of α-phase in the PVDF increases with an increasing annealing time, which in turn decreases the dielectric constant and dielectric loss. The breakdown dielectric strength of the BZN film increases by mixing PVDF. However, the breakdown field decreases with an increasing annealing time. The BZN-PVDF composite film has the energy density of 4.9 J/cm3, which is larger than that of the pure BZN film of 3.6 J/cm3.
        4,000원
        59.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 사구 고정 구조물의 종류에 따라서 모래 퇴적속도, 형태, 퇴적량을 분석하여 해안복원 기초자료로 제공하기 위하여 수행되었다. 연구 대상지는 경상북도 포항시 북구 해안림이 조성된 해변 지역을 선정하였다. 계단식 옹벽과 퇴사울타리 설치 후 3년간(2014-2016) 모래퇴적을 모니터링하여 비교 분석하였다. 각 구조물의 모래퇴적을 분석한 결과, 평균 모래퇴적 높이는 계단식 옹벽이 퇴사울타리 보다 약 1.3배 더 퇴적되었다. 구조물의 풍속저감 효과는 0.5m 높이에서 계단식 옹벽이 43.3%, 퇴사울타리 32.2%로 나타났다. 이 연구의 결과는 앞으로 해안사구 조성 및 해안림 기반 조성의 기초자료로 활용될 것으로 기대된다.
        4,200원
        60.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on CaCO3 was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature (700ºC), time (55 min), argon flow rate (230.37 mL min–1) and acetylene flow rate (150 mL min–1) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.
        4,000원
        1 2 3 4 5