검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the efficiency of hairtail trolling, it is important to gain an accurate understanding of the distribution of fish based on their diurnal vertical migration patterns. This study evaluated the vertical distribution of hairtails through catch efficiency tests using vertical longlines. Five replicate tests of the efficiency were carried out on the eastern coast of Jeju Island from August to September 2016, from 11:00 AM to 03:00 PM in the daytime and 11:00 PM to 03:00 AM in the nighttime. The fishing gear was composed of 20 hooks per line set, numbered in order from the first hook near the surface to the last hook on the seabed. The depth of the first hook was 18 m, and that of the last hook was 86 m. Pacific saury was used as the baits. In total, 10 sets of fishing gear were used per trip. After fishing, we counted the hairtails at each numbered hook, which were summed up both by number and in aggregate. A total of 232 hairtails were caught using 2,000 hooks: 193 individuals at daytime and 39 at nighttime. The hook rate was 11.5% : 9.6% at daytime; 2.0% at nighttime. For both daytime and nighttime catches, there were variations in the hook rates at each numbered hook. In the daytime, a maximum of 28.5% catches occurred at hook number 18, followed by 21.4% at number 20, and 10.7% at number 17, accounting for 60.6% of the daytime hook rates. In the nighttime, a maximum of 23.0% catches occurred at hook number 1, followed by 15.3% at hook number 4 and 9, accounting for 53.6% of the nighttime hook rate. Based on the above results, hairtails are usually distributed in deeper region in daytime, whereas they occur near the surface in nighttime. Therefore, it is necessary to position trolling lines according to diurnal vertical distribution layers of hairtails for fishing efficiency.
        4,000원
        2.
        1994.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The speed of vertical migration and the volume backscattering strength of the scattering layers during the evening and morning transitions between day and night were measured in November 1990-1992 in thermally stratified waters of the East China Sea. Acoustical measurements were carried out using a scientific echo-sounder operating at t재 frequencies of 25 and 100kHz, and using an echo-integration system connected with a micro-computer. Biological sampling was accomplished by bottom trawling to identify fish species recorded on the echo sounder, and the species and length compositions were determined. The values of scattering strength were allocated to group of fishes according to the fish traces on the echo recording paper and the species composition of trawl catches. The vertical velocities of migration derived from the changes in the depths and the values of peak scattering strength of the dense layer vertically migrating toward the bottom or toward the surface. The trawl data suggest that snailfish and fishing frog were the most abundant fishes in all research stations. As sunrise approached, the fish formed a strong concentration just above the thermocline. The the highest values of scattering strength in the entire water column appeared in the depth strata above the thermocline just before the begining of downward migration. As soon as the fish began to migrate downwards across the thermocline, the values of the scattering strength in the depth strata above the thermocline rapidly decreased, while the values for the scattering layer moving slowly toward the bottom gradually increased. During the 1992 surveys, the speed of the vertical migration was estimated to be 0.38m/min in the upward migration and 0.32m/min in the downward migration, respectively. That is the rate of vertical migration was slightly higher at dusk than at dawn. Similar migration patterns were observed on different stations and under different weather conditions during the surveys in 1990.
        4,300원