검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 56

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the aromatic carbon content of epoxy resin (EP) increased via carbon tar pitch (CTP) modification, and the CTP occurred self-polymerization reaction. The carboxyl and hydroxyl groups of CTP and the hydroxyl and carboxyl groups of EP occurred chemical cross-linking reaction. CTP and graphitization treatment promoted EP CF carbon crystal growth. The graphitization degree of pure EP CF and 40 wt% CTP modified EP CF are 8.42% and 44.21%, respectively. With the increase CTP content, the cell size, ligament junction and density of graphitization modified EP CF gradually increased, while the number of pores and cells gradually decreased. The cell size, ligament junction size and density of 40 wt% CTP modified graphitization EP CF increased to 1200 μm, 280 μm and 0.5033 g/cm3, respectively. EP CF exhibits entangling carbon ribbon and isotropic amorphous carbon. The 40 wt% CTP modified EP CF is composed of evenly distributed amorphous resin carbon and graphite domain CTP carbon. The graphitization modified EP CF improved electrical conductivity, and the electrical conductivity of 40 wt% CTP modified EP CF is 126.6 S/m. The compressive strength can be decided by EP carbon strength and its char yield, and graphitization 40 wt% CTP modified EP CF reached 4.9 MPa. This study provides some basis for preparation and application of CTP modified EP CF.
        4,000원
        2.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, four different samples of Se60Ge40-xBix chalcogenides glasses were synthesized by heating the melt for 18 h in vacuum Pyrex ampoules (under a 10-4 Torre vacuum), each with a different concentration (x = 0, 10, 15, and 20) of high purity starting materials. The results of direct current (DC) electrical conductivity measurements against a 1,000/T plot for all chalcogenide samples revealed two linear areas at medium and high temperatures, each with a different slope and with different activation energies (E1 and E2). In other words, these samples contain two electrical conduction mechanisms: a localized conduction at middle temperatures and extended conduction at high temperatures. The results showed the local and extended state parameters changed due to the effective partial substitution of germanium by bismuth. The density of extended states N(Eext) and localized states N(Eloc) as a function of bismuth concentration was used to gauge this effect. While the density of the localized states decreased from 1.6 × 1014 to 4.2 × 1012 (ev-1 cm-3) as the bismuth concentration increased from 0 to 15, the density of the extended states generally increased from 3.552 × 1021 to 5.86 × 1021 (ev-1 cm-3), indicating a reduction in the mullet’s randomness. This makes these alloys more widely useful in electronic applications due to the decrease in the cost of manufacturing.
        4,000원
        3.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metals had been significantly substituted by synthetic polymers in most of our daily requirements, thus relaxing our life. Out of many applied areas, synthetic polymers especially conducting polymers had shown their marked effect and potential. Batteries, pseudocapacitors, superconductors, etc. are the potential zones where conducting polymers are chiefly employed owing to their appreciable conductivity, cost efficiency, and corrosion inhibition nature. Apart from energy storage devices, these conducting polymers find their potential application in biosensors, lasers, corrosion inhibitors, electrostatic materials, conducting adhesives, electromagnetic interference shielding, and others. These all applications including energy storage are due to astonishing properties like high conductivity, flexibility, tuneability, easy processibility, chemical, thermal and mechanical stability, easy and enhanced charge transportation, lightweight, etc. Conducting polymers are extensively studied for their application in energy storage batteries, for which the material under investigation needs to be electrically conductive. However, the conducting nature of these specific conducting polymers is dependent on numerous factors. This review discussed the effect of certain potential factors such as polymerization techniques temperature, doping, bandgap, extended conjugation, solvent, etc. on the electrical/electrochemical conductivity of these conducting polymers. These all factors with their specific variations are found to have a noticeable consequence on the electrical conductivity of the investigated conducting polymer and hence on the energy storage carried by them. This review could be proved beneficial to the readers, who can judiciously implement the conclusions to their research related to conducting polymers and their composites for generating highly efficient energy storage systems.
        5,200원
        4.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0–64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.
        5,100원
        5.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식물의 생장과 발달은 지하부 환경에도 영향을 받으므로 근 권 환경의 변수들을 관수전략의 수립에 고려하는 것이 매우 중요하다. 본 연구의 목적은 수분이동 특성이 다른 2종류의 암 면배지에서 FDR센서를 활용하여 체적함수율(VWC)과 Bulk EC(ECb) 그리고 식물의 뿌리가 이용하는 Pore EC(ECp)에 대한 관계를 분석하고, 이를 활용하여 이용가능한 근권 환경 데이터 수집과 보정 방법을 확립하고자 진행되었다. 실험은 물리적 특성이 다른 2종류의 암면배지(RW1, RW2)를 사용 하였다. FDR 센서를 활용하여 함수율(MC)과 ECb를 측정하 였으며, ECp는 체적함수율(VWC) 10-100%에서 배지 중 앙부위에 일회용 주사기를 이용하여 배지 잔류 양액을 추출 후 측정하였다. 이후 2종류 배지(RW1, RW2)에 서로 다른 농 도(증류수, 0.5-5.0)의 배양액을 각 체적함수율 범위(0- 100%)로 공급하여 ECb와 ECp를 측정하였다. RW1, RW2 배지에서 ECb와 ECp의 관계는 3차 다항식에 가장 적합하였 다. 체적함수율(VWC) 범위 3차 다항식에 따른 ECb와 ECp 의 관계는 낮은 체적함수율(VWC) 10-60% 구간에서 큰 오 차율을 보였다. 체적함수율(VWC)범위에 따른 센서 측정값 (ECb) 및 식물 뿌리가 이용하는(ECp)의 상관관계는 2종류 배 지(RW1, RW2) 모두 Paraboloid 식에서 결정계수값이 각각 0.936, 0.947로 가장 높았다.
        4,000원
        6.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 μS/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.
        5,200원
        7.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, the effect of Ni (0, 0.5 and 1.0 wt%) additions on the microstructure, mechanical properties and electrical conductivity of cast and extruded Al-MM-Sb alloy is studied using field emission scanning electron microscopy, and a universal tensile testing machine. Molten aluminum alloy is maintained at 750 oC and then poured into a mold at 200 oC. Aluminum alloys are hot-extruded into a rod that is 12 mm in diameter with a reduction ratio of 39:1 at 550 oC. The addition of Ni results in the formation of Al11RE3, AlSb and Al3Ni intermetallic compounds; the area fraction of these intermetallic compounds increases with increasing Ni contents. As the amount of Ni increases, the average grain sizes of the extruded Al alloy decrease to 1359, 536, and 153 μm, and the high-angle grain boundary fractions increase to 8, 20, and 34 %. As the Ni content increases from 0 to 1.0 wt%, the electrical conductivity is not significantly different, with values from 57.4 to 57.1 % IACS.
        4,000원
        8.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cymbidium is one of the most popular and economically important species cultivated as a commercial ornamental crop. The objectives of this study were to determine the appropriate electrical conductivity (EC) treatments of nutrient solution, which gives the highest spike production and quality. Three-year-old Cymbidium ‘Lovely Smile’ plants were grown in the environmentally controlled Information and Communication Technology (ICT) smart greenhouse at Seoul Women’s University. The EC of the nutrient solution was changed in three distinct stages: vegetative, flower initiation, and flower development. The EC treatments were 1-0-1 (dS·m-1, EC101), 1-1-1 (dS·m-1, EC111), 2-1-2 (dS·m-1, EC212), 2-2-2 (dS·m-1, EC222), 3-2-3 (dS·m-1, EC323), 3-3-3 (dS·m-1, EC333) and the pH was adjusted to 6.0–6.5. Pseudobulb diameter increased in the plants treated with EC 101 and EC111 compared to the plants treated with EC 2.0–3.0 dS·m-1 at the reproductive stage 28 weeks after nutrient solution treatment. Flower spike production per pot and pseudobulb showed the highest values in the plants treated with EC111 of 3.3 and 1.4, respectively. Flower spikes length was the highest in the plants treated with EC 1.0 dS·m-1 and stem thickness, number of flowers, and fresh weight were the largest in the plants with EC 1.0 dS·m-1 among the EC treatments. Flower spikes had the worst quality (e.g., plant growth and flowering quality) in the plants treated with EC 3.0 dS·m-1 among the EC treatments. Floral bud and flower development took place 1–2 weeks earlier in the plants treated with EC 101, 111, and 212 than the other treatments. Flower diameter showed the highest values in the plants treated with EC 1.0 dS·m-1 among the EC treatments and flower color showed higher L* and b* values and lower a* values in the plants treated with EC 3.0 dS·m-1 compared to EC 1.0 and 2.0 dS・m-1. Nutrient solution of EC 1.0 dS·m-1 (EC111) can be recommended to improve flower spike quality and advanced flower development of Cymbidium.
        4,000원
        11.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene fiber is considered as a potential material for wearable applications owing to its lightness, flexibility, and high electrical conductivity. After the graphene oxide (GO) solution in the liquid crystal state is assembled into GO fiber through wet spinning, the reduced graphene oxide (rGO) fiber is obtained through a reduction process. In order to further improve the electrical conductivity, herein, we report N, P, and S doped rGO fibers through a facile vacuum diffusion process. The precursors of heteroatoms such as melamine, red phosphorus, and sulfur powders were used through a vacuum diffusion process. The resulting N, P, and S doped rGO fibers with atomic% of 6.52, 4.43 and 2.06% achieved the higher electrical conductivities compared to that of rGO fiber while preserving the fibrious morphology. In particular, N doped rGO fiber achieved the highest conductivity of 1.11 × 104 S m−1, which is 2.44 times greater than that of pristine rGO fiber. The heteroatom doping of rGO fiber through a vacuum diffusion process is facile to improve the electrical conductivity while maintaining the original structure.
        4,000원
        13.
        2021.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수경재배시 양액 내 탄산정 처리를 통한 상추의 생육 및 생 리활성물질 변화를 조사하기 위해 네덜란드에서 시판되는 고 형 탄산정을 사용하였다. 실험은 무처리를 대조구로 하여 0.5 배, 1배, 2배 처리구로 구성하였다. 실험결과, 탄산정 처리 후 챔 버내 대기 CO2 농도는 처리 직후 2배 처리구에서 472.2μL·L -1 로 가장 높은 수치를 보였으며, 양액내 pH는 2배 처리구는 pH 6.03로 가장 많이 감소하였다. 이후 시간이 경과함에 따라 CO2 농도와 pH는 처리 전 수준으로 회복하는 모습을 나타냈 다. 상추의 엽폭과 엽면적은 탄산정 2배 처리시 17.1cm, 1067cm 2로 가장 큰 값을 나타내었으며 지상부 생체중, 건물 중은 0.5배 처리구에서 63.87g, 3.08g으로 가장 높게 나타났 다. 상추의 근장은 대조구에서 28.4cm로 가장 길었으나 처리 구들간에 지하부의 생체중, 건물중은 유의적인 차이를 나타 내지 않았다. 외관상 탄산정 처리에 의해 상추의 근장이 짧아 지고 곁뿌리가 많이 발생한 것이 관찰되었다. 또한 뿌리가 갈 색으로 약간 변하는 결과가 있었지만, 지상부 생육에는 부정 적인 영향을 미치지 않은 것으로 나타났다. 탄산정 처리에 의 한 상추의 생리활성물질을 분석한 결과 chlorogenic acid와 quercetin 두가지 물질이 검출되었으며 이를 정량분석한 결과 1배 처리구에서 chlrogenic acid는 대조구보다 249% 증가하 였지만 quercetin은 37% 감소한 결과를 나타냈다. 항산화 활 성을 나타내는 DPPH 라디컬 소거능을 비교한 결과 대조구와 0.5배 처리가 1배, 2배 처리보다 유의적으로 높은 값을 나타냈 다. 이를 통해 탄산정 처리가 수경재배 상추의 생육과 생리활 성물질을 증대에 효과가 있음을 제시한다.
        4,000원
        14.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 μm; however, this value drops to 914 and 529 μm with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the asextruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.
        4,000원
        15.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Facile process for the fabrication of multi-layer graphene thin film (MLGF) is reported here. Multi-layer graphene dispersion prepared by liquid-phase exfoliation of graphite was sprayed on a glass substrate by spray pyrolysis method. The structural, optical and electrical properties of the deposited MLGF are investigated. The sheets of graphene are deposited uniformly on the substrate and distribution of small graphene sheets with size of 300–500 nm can be observed in SEM image. AFM and micro-Raman results ensured that the spray-coated graphene thin film is composed of multi-layer graphene sheets. Spray coated graphene thin film showed significant optical transparency of 57% in the visible region (400–550 nm). MLGF possessed the electrical conductivity in the order of 744 S/m with surface resistivity of 3.54 k Ω/sq. The prepared liquid-phase exfoliated graphene thin film showed superior photoelectric response. The results of this study provided a framework for fabricating an optimized MLGF using a spray pyrolysis route for optoelectronics devices.
        4,000원
        17.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, an analytical model is developed for electrical conductivity of nanocomposites, particularly polymer/carbon nanotubes nanocomposites. This model considers the effects of aspect ratio, concentration, waviness, conductivity and percolation threshold of nanoparticles, interphase thickness, wettability between polymer and filler, tunneling distance between nanoparticles and network fraction on the conductivity. The developed model is confirmed by experimental results and parametric studies. The calculations show good agreement with the experimental data of different samples. The concentration and aspect ratio of nanoparticles directly control the conductivity. Moreover, a smaller distance between nanoparticles increases the conductivity based on the tunneling mechanism. A thick interphase also causes an increased conductivity, because the interphase regions participate in the networks and enhance the effectiveness of nanoparticles.
        4,200원
        18.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from 21.9 Ω/□ to 12.6 Ω/□. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.
        4,000원
        19.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of multi-walled carbon nanotube (MWCNT) type and flow type (shear and elongational flow) on the electrical conductivity of polycarbonate (PC)/MWCNT nanocomposites were investigated. Two different MWCNTs produced a huge difference in electrical conductivity in an injection molded PC/MWCNT nanocomposite. It was observed that MWCNTs having a higher aspect ratio provide much lower electrical conductivity in injection molded PC/MWCNT nanocomposites while the conductivities of compression molded samples from two different MWCNTs were the same. We found that this is due to a difference in the deformability of the two MWCNTs. Nanocomposite samples prepared at a higher extensional rate and shear rate showed lower electrical conductivity. This is attributed to flow induced orientation of the MWCNTs. The experimental results were discussed in relation to variation in the tube–tube contact due to the change of the MWCNT orientation.
        4,000원
        20.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TaNx film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as N2+H2 mixed gas, NH3, and H2. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using NH3 as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using N2+H2 mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown TaNx film with N2+H2 mixed gas, NH3, and H2. For a comparison, reactive sputter-grown TaNx film with N2 is also studied. The results reveal that ALD-grown TaNx films with NH3 and H2 include a metallic Ta-N bond, which results in the film’s higher conductivity. Meanwhile, ALD-grown TaNx film with a N2+H2 mixed gas or sputtergrown TaNx film with N2 gas mainly contains a semiconducting Ta3N5 bond. Such a different portion of Ta-N and Ta3N5 bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.
        4,000원
        1 2 3