검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 632

        81.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen-doped carbon dots (CDts) with tunable fluorescence properties in aqueous media were synthesized hydrothermally. The excitation wavelength variation to obtain the maximum emission produced a blue shift in the emission peaks upon dilution in an aqueous solution. The shift can be explained by a re-absorption phenomenon in a concentrated solution. The interparticle interaction within was responsible to show dilution-dependent optical behavior. The as-synthesized solution of CDts did not show any prominent absorption peak over a wide range. However, upon dilution, two peaks became predominant. The concentration-dependent behavior was observed during the interaction with metal cations. Cationic salts of Co(II) and Hg(II) caused quenching at different dilutions of CDts. This might be explained by the exposure of different surface functional groups during dilution and metal-ion–CDts charge transfer. The quenched fluorescence of CDts was rescued using ascorbic acid. Therefore, the one-pot detection of Co(II)/Hg(II) and ascorbic acid was designed through a ‘Turn Off/On’ phenomenon.
        4,600원
        82.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.
        4,000원
        83.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to assess the effect of acidification of pig slurry on nitrogen (N) mineralization and its environmental impacts during pig slurry fermentation. Different inorganic and organic acids were used to acidify pig slurry. Four treatments including non-acidified pig slurry (control), pig slurry acidified with sulfuric acid, lactic acid, and citric acid were allocated with three replications. The total N content in the acidified pig slurry was higher than non-acidified pig slurry after fermentation. Acidification tended to increase total N content in pig slurry. Ammonium N (NH4 +-N) released from pig slurry was obviously increased at 7 days after incubation, representing 61.4%, 36.8%, and 37.4% increase in the acidified pig slurry with sulfuric acid, lactic acid, and citric acid, respectively. Nitrate N (NO3 --N) in the acidified pig slurry with sulfuric acid was the highest throughout the experiment period, but non-significant effect of organic acid. A large portion of ammonia (NH3) emission occurred within 10 days, corresponding to more than 55% of total NH3 emission. Total cumulative NH3 emission during the experimental period was lower 91% (2.9 mg N kg-1), 78% (7.3 mg N kg-1), and 81% (6.2 mg N kg-1) in the acidified pig slurry with sulfuric acid, lactic acid, and citric acid, respectively, than non-acidified pig slurry (32.7 mg N kg-1). These results suggest that acidification of pig slurry (particularly with sulfuric acid) can be faced as a good strategy to reduce NH3 emission without depressing the mineralization process.
        4,000원
        86.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A Y6-xCa1.5xSi11N20O:Ce3+(x=2.5) oxynitride phosphor is synthesized at 1,750 oC in a mixed gas atmosphere of 5% H2 and 95 % N2 by using YN, Ca3N2, Si3N4, and CeO2 as raw material reagents. The crystal structure is a trigonal crystal system that has a P31c (no.159) space group and has lattice parameters of a, b = 9.8876(3), and c = 10.6806(4). This structure is an Er6Si11N20O structure type in which a Y6-xCa1.5xSi11N20O structure is formed by substituting a trivalent Y3+ element and a bivalent Ca2+ element at the position of Er element having an oxidation number of +3. Here, the charge difference caused by different oxidation numbers is balanced by the occupancy of a partially vacant 2c site and an O/N anion ratio in the Er6Si11N20O structure type. The Y6-xCa1.5xSi11N20O:Ce3+ (x = 2.5) phosphor is yellow powder with yellow luminescence; performing Rietveld refinement on the phosphor on the basis of the data obtained by XRD measurement results in the lattice parameters as described above. The Y6-xCa1.5xSi11N20O:Ce3+ (x = 2.5) phosphor has a broad emission band due to Ce3+ as an activator with the center wavelength of 565 nm. This phosphor has a broader emission band than a YAG:Ce3+ phosphor, which is a representative LED phosphor, and thus extends further into the blue and red spectrum ranges. Accordingly, this phosphor is an interesting phosphor that can be used for 1pc-LED with an improved color rendering index.
        4,000원
        87.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        온도와 CO2 농도는 버섯의 생육과 품질에 영향을 미친다. 특히, 버섯의 호흡에 의한 고농도 CO2는 버섯의 생리 장해를 발생시킨다. 본 연구에서는 생육 시기와 솎아내기 여부에 따른 새송이 버섯(Pleurotus eryngii (DC.) Quél)의 CO2 발생 속도를 정량화 하였다. 버섯의 자실체를 포함하는 배지의 CO2 발생 속도는 솎아내기 전에 비해 후에 통계적으로 유의미한 상승을 보였다. 호흡 모델에서 자실체의 유지 계수와 CO2 발생 계수는 온도에 따른 이차식으로 표현되었다. 버섯 1병의 CO2 발생 속도 모델에 의한 추정치는 실측치와 검증을 통해 R 2 = 0.71의 결과를 나타내었다. 이로부터 버섯의 CO2 발생 속도는 생육 시기에 따라 지수적으로, 16℃에서 25℃ 범위에서 이차함수 형태로 증가함을 확인하였다. 본 연구에서 정립한 새송이 버섯의 CO2 발생 속도 모델은 새송이버섯을 재배사의 CO2 와 온도 관리를 위해 사용될 수 있다.
        4,000원
        90.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.
        4,200원
        91.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emission of particulate matter and volatile organic compounds (VOCs) from a motor vehicle painting booth was quantitatively evaluated. Most particulate matter was emitted during the spraying process, in which the PM10 concentration was 16.5 times higher than that of the drying process. When the paint was being sprayed, the particles with a diameter of 1.0~2.5 μm accounted for 39.4% and particles greater than 2.5 μm in diameter accounted for 30.6% of total particles. On the other hand, small particles less than 0.5 μm in diameter accounted for 52.4% of total particles during the drying process. In contrast to the particulate matter, high concentrations of VOCs were emitted during both spraying and drying processes. Butyl acetate, xylene, toluene, and m-ethyltoluene were the most abundant VOCs emitted from the motor vehicle painting booth. Additionally, xylene, butyl acetate, toluene, and 1,2,3-trimethylbenzene were the dominant ozone precursors. Especially, xylene exhibited the highest ozone production contribution (32.5~44.4%) among 34 species of the ozone precursors. The information obtained in this study can be used to establish a suitable management strategy for air pollutants from motor vehicle painting booths.
        4,200원
        92.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The security accidents occurring in ships and at seas and ports became very serious, and in particular, the maritime terrorism and abduction by pirates have emerged at the international level as a problem. The international maritime organization (IMO), accordingly, entered into such forces as the SOLAS chapter and measures in order to reinforce the maritime security and the security for ships and port facilities in 2004. In this study, the JDS-S4 improved as an oriented speaker to reinforce the ship security by enabling the clear communication even at long distance was tested by using the conducted emission test(CE101) and a standard test of the US military standard (MIL-STD-461F). Also, the result of this study was shown to satisfy the standard.
        4,000원
        93.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we compare and analyze the injector defects of P-ENG and S-ENG with normal injectors by measuring current waveforms, voltage waveforms, exhaust gases and driving fuel economy. In the case of FTS failure, the S-ENG reduced the overall injection time by 3.7% and the main injection by 3.5% compared to the normal engines. In the case of AFS failure, the overall injection time increased by 45.7% and the main injection time increased by 24.1% compared to the normal engine. The rest data showed that fuel economy of S-ENG had 25.9% higher than P-ENG, NOX had 162.5% higher than that of P-ENG, and CO2 of S-ENG had 26.7% lower than P-ENG.
        4,000원
        94.
        2021.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, narrow-band green-emitting CsPbBr3 particles are embedded in commercialized glass composites by a facile dry process. By optimizing the method through sintering in glass frit (GF) composites including CsBr and PbBr2, used as precursors, the encapsulation of CsPbBr3 particles made them waterproof with green fluorescence. To improve the fluorescent properties by reducing aggregation of CsPbBr3, fumed silica (FS) is additionally used to help particles avoid bulking up in the glass matrix. The CsPbBr3 perovskite/glass composites are characterized using scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) maps, which support the existence of CsPbBr3 particles in the glass matrix. The photoluminescence (PL) properties demonstrate that the emission spectrum peak, full width at half maximum (FWHM), and photoluminescence quantum yield (PLQY) values are 519 nm, 17 nm, and 17.7 %. We also confirm the water-resistant properties. To enhance water/moisture stability, the composite sample is put directly into water, with its PLQY monitored periodically under UV light.
        4,000원
        95.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pig slurry (PS) is the most applicable recycling option as an alternative organic fertilizer. The application of pig slurry has the risk of air pollution via atmospheric ammonia (NH3) and nitrous oxide (N2O) emission. The zeolite has a porous structure that can accommodate a wide variety of cations, thus utilizing for the potential additive of deodorization and gas adsorption. This study aimed to investigate the possible roles of zeolite in mitigating NH3 and N2O emission from the pig slurry applied to the maize cropping. The experiment was composed of three treatments: 1) non-N fertilized control, 2) pig slurry (PS) and 3) pig slurry mixed with natural zeolite (PZ). Both of NH3 and N2O emission from applied pig slurry highly increased by more than 3-fold compared to non-N fertilized control. The NH3 emission from the pig slurry was dominant during early 14 days after application and 20.1% of reduction by zeolite application was estimated in this period. Total NH3 emission through whole period of measurement was 0.31, 1.33, and 1.14 kg ha-1. Nitrous oxide emission in the plot applied with pig slurry was also reduced by zeolite treatment by 16.3%. Significant increases in forage and ear yield, as well as nutrient values were obtained by pig slurry application, while no significant effects of zeolite were observed. These results indicate that the application of zeolite and pig slurry efficiently reduces the emission of ammonia and nitrous oxide without negative effects on maize crop production.
        4,000원
        96.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to measure and analyze the fugitive dust generated by each process through field tests to develop a technology to reduce fugitive dust generated during excavation-restoration work on road pavements. METHODS : The testbed was constructed based on a typical excavation-restoration construction section and comprised five sections for reproducibility and repeated measurements. The excavation-restoration work was divided into pavement cutting, pavement crushing, pavement removal, excavation, and restoration processes and fugitive dust generated by each process was measured. Fugitive dust (TSP, PM10, PM2.5, and PM1) was measured using a GRIMM particle spectrometer, which applies the principle of a light scattering spectrometer and can be measured in real-time. RESULTS : Analyses of the average mass concentration of PM10 generated by the excavation-restoration process are as follows: 1286.3 μg/m³ from pavement cutting, 246.8 μg/m³ from pavement crushing, 697.0 μg/m³ from pavement removal, 747.9 μg/m³ from excavation process, and 350.6 μg/m³ from the restoration process. In addition, the average particle size distribution of the excavationrestoration construction was in the order of PM10~PM2.5 (67 %), PM1 or less (24 %), and PM2.5~PM1 (9 %). The pavement cutting process is characterized by the emission of high concentrations of fugitive dust over a short time, compared to other processes. The pavement crushing process has the characteristic of steadily generating fugitive dust for a long period, although the emission concentration is small. CONCLUSIONS : In this study, it was found that the concentration and characteristics of fugitive dust generated during road pavement excavation-restoration works vary by process and the reduction technology for each process should be developed accordingly.
        4,000원
        97.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation–emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.
        4,300원
        98.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, actual odor conditions were investigated in restaurants, livestock facilities, and major odor discharge facilities around daily life, and an odor modeling program was performed to find ways to improve odors in odor discharge facilities. The odor modeling results of restaurants around daily life showed that the complex odor concentration of large restaurants, which are close to residential areas, is higher than the acceptable complex odor standard at the receiving point. It was judged that a plan to increase the height of the restaurant odor outlets and a plan to reduce the amount of odor discharge was necessary. As a result of modeling the life odor of livestock housing facilities, when the distance from the housing facility is far away, the actual emission concentration is much lower than the acceptable emission concentration at the receiving point. It was judged that such facilities need to be reviewed for ways to reduce the emission of odorous substances, such as sealing the livestock housing facilities or improving the livestock environment. The main odor emission business sites that show complex odor concentration as 1,000 times or greater than the outlet odor emission standard were businesses associated with surfactant preparation, compounded feed manufacturing, textile dyeing processing, and waste disposal. Due to the separation distance and high exhaust gas flow rate, it was found that odor reduction measures are necessary. In this study, it was possible to present the allowable odor emission concentration at the discharge facilities such as restaurants, livestock houses, and industrial emission facilities by performing the process of verifying the discharge concentration of the actual discharge facility and the result of living odor modeling. It is believed that suitable odor management and prevention facilities can be operated.
        4,200원
        1 2 3 4 5