PURPOSES : The study aims to establish a comprehensive life cycle assessment model for bridges in South Korea considering domestic carbon emission factors. The main aims are to evaluate the carbon emission of bridge construction, focusing on the Seong-ri Bridge as a case study, and to improve national environmental policies and management strategies. METHODS : We utilized the life cycle assessment (LCA) methodology, adhering to standards set by ISO, to categorize each phase of the bridge's life cycle. The process involved selecting the bridge type based on the compilation of a detailed analysis range. The analysis covered various stages from raw material supply (A1-A3) to construction (A4-A5) and maintenance (B2-B5), excluding certain stages due to data unavailability. Carbon emission factors were then applied to quantify emissions at each stage. RESULTS : The findings indicate that the raw material production phase (A1-A3) contributes to approximately 96% of the total carbon emissions, highlighting its significant impact. We report detailed calculations of emissions using domestically developed emission factors for materials such as steel and concrete and establish a carbon emission per unit length measure for comparative analysis with other infrastructure. CONCLUSIONS : We leveraged LCA ISO standards to analyze each stage of the Seong-ri bridge, calculating its carbon emissions based on domestic factors for CO2, CH4, and N2O. By tailoring the study to Korea-specific emission factors, we develop a greenhouse gas model closely aligned with the nation’s environmental conditions. The results contribute to improving environmental impact assessments and strategically aiding national policy and management decisions.
This study aimed to estimate the odor emission rate from swine nursery facilities (naturally and mechanically ventilated) using probability distribution. Odor occurrence trends in the study facilities were very different; odor concentration and gas flow had a lognormal distribution. Monte Carlo simulation was used to carry out the uncertainty analysis. Odor emission rate was found to range from 18.05 OU/sec (10th percentile) to 621.88 OU/ sec (90th percentile), and odor emission rate per head ranged from 0.02 OU/sec · head (10th percentile) to 0.64 OU/ sec · head (90th percentile).
PURPOSES : This study proposes a methodology to collect data necessary for microlevel emission estimation, such as second-by-second speeds and road grades, and to accordingly estimate emissions. METHODS: To ease data collection for microlevel emission estimation, a vehicle equipped with speed- and location-recording instruments as well as equipment for measuring road geometry was used. As a case study, this vehicle and the proposed methodology were used on a 10- km-long highway in Yongin City, Korea. Emissions from the vehicle during driving were estimated in various microscale driving conditions. RESULTS : Differences in the estimated emission under different microscale driving conditions cannot be ignored. Compared with the estimations obtained when second-by-second data were not considered, CO and NOx emissions were more than threefold higher when considering second-by-second speed; similarly, CO and NOx emission estimations were higher by approximately 10% and 3%, respectively, when considering second-by-second road grade. CONCLUSIONS : The proposed method can estimate vehicle emissions under real-world driving conditions in such applications as road design and traffic policy assessments.
In this study, leachate treatment facility (outlet, facility inside) and landfill sections (vent systems, landfill surface)of nine landfills is being buried in korea were studied emission characteristics of odor compounds. Air dilutionvalue in ventpipes of landfill section was generally highest and was more 3 times higher than emission standard(air dilution value of facilities outlet : 500) in Daejeon, Tongyeong, and Busan landfill. Outlet of leachate treatmentfacilities in Tongyeong and Daegu landfill, in case, was higher respectively 20 times, 6 times than other landfills,commonly show that a large contribution to the odor of hydrogen sulfide. In case of ordor emission rate, ammoniaand hydrogen sulfide were surveyed to comprise a high rate for odor emission rate. Odor emissions based onlandfill scale, large landfill (Sudokwon) and small landfills (Yeosu, Chuncheon, Chungju) is low in odor emissionsper unit area, whereas medium landfill (Busan, Daejeon, Daegu) was estimated to be high odor emissions. In caseof large landfill, leachate treatment facilities is management in good condition and discharged odor emission oflandfill sections was low into ambient air. In case of small landfill, decay gases and leachate is few. Thereforeodor emissions is fewer than estimated medium landfill. In case of medium landfill, management condition ofleachate treatment facility was in poor and landfill sections was under not stabilization stage. Thus, mediumlandfills was identified that needs to be intensive care.
고형페기물 매립지에서 온실가스 배출량 산정은 기후변화에 대응 측면에서 매우 중요한 사항이다. 국내에서 메탄가스 배출량 산정은 주로 IPCC(Intergovernmental Panel on Climate Change)가이드라인에 근거하여 매립지 표면에서 직접적으로 flux chamber를 이용하여 배출량을 측정하거나, 또는 FOD(First Order Decay)방법에 의존하여 왔다. 그러나 FOD방법은 매립특성을 반영한 매립가스발생속도상수(k)를 정확히 산정하는데 어려움이 존재하고, 또한 표면 발산량을 측정하는 방법은 매립지 표면에서 배출량이 다양하고 측정이 한정된 기간에만 국한된다는 문제점을 내재하고 있다. 대안으로 본 연구에서는 plume measurement의 한 방법으로 대기확산모델을 활용한 역모델링기법을 적용하는 것을 검토하였다. 역모델링에 의해서 매립지 메탄가스 배출량을 직접 계산하기 위한 방법론을 정리하고, 실제 대전매립지에서 측정한 메탄농도를 이용하여 역모델링기법을 적용한 매립지 메탄 배출량 산정하는 방법에 대하여 제시하였다. 역모델링 과정을 검증하기 위해서 임의의 배출량으로 모델링을 수행하여 모델 예측농도와 확산변수 를 계산하였으며, 역으로 예측농도와 확산변수 를 이용하여 배출량을 재산정 하였다. 재산정한 배출량이 임의의 배출량과 동일함을 확인함으로써 본 연구에서 제시하고 있는 역모델링 절차가 적절함을 검증하였다. 또한, 본 연구에서는 역모델링 기법을 적용하여 실제 대전매립지를 대상으로 메탄 배출량 산정하였다. 대전매립지를 대상으로 메탄배출량을 산정한 결과 29.65~36.68 g/㎡-day로 산정되었으며, 주요 메탄 배출지점은 매립지 내의 유사한 지점에서 일관되게 나타났다. 본 연구방법은 기존의 방법과 비교하면, 메탄농도의 측정방법이 간단하고 비용이 적게 소요되므로 지속적인 모니터링이 가능한 장점이 있으며, 불균일한 매립지 표면의 배출량을 비교적 간편하게 산출이 가능한 것으로 파악되었다. 한편, 본 연구는 제한된 실험에 의한 결과이므로 향후 실제 매립지 배출량을 직접 측정하거나, 또는 추적자 실험을 통해서 그 방법론을 추가로 검증할 필요가 있는 것으로 판단된다.
Organic light emitting diode(OLED) has been developed fast from 1963 when electric light emitting phenomenon was discovered. PMOLED(passive matrix OLED) is producted earlier than AMOLED(active matrix OLED). PMOLED is mainly mounted at sub display, but AMOLED is mounted at main display. Nowadays AMOLED is expanded to PMP(portable multimedia players), navigation and TV market. Even thought OLED's market is opening to many applications, OLED's life is worried until now. If we know about OLED's real life, we need time to test so much time over 20,000hrs. Realistically, there is difficult to test such as long time with products from the information-technology sector having a short life cycle. In this paper, we study about OLED's accelerated test to reduce life test by current. We can design OLED's accelerated life model by the result of test. The model consists of design variables like ratio of light emitting, organic material structure, condition of aging, etc. In conclusion, this model can be applied to study about organic material, machine and manufacturing process etc, and also it's possible to develop a method of manufacturing process & materials, so we need to study on the subject of this paper continuously.
This study is deal with the high frequency induction hardening (HF at 850℃, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen which was tempered at 150℃, did not appear any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE amplitude distribution showed between 45~60dB. (2) The HF specimen which was tempered at 300℃, slip and fracture occurred at the hole area of the tensile specimen. As it passes the yield point, the AE energy increased intermittently and AE amplitude distribution showed between 70~85dB. In addition, after the maximum tensile load, it showed high amplitude and energy distribution. The AE amplitude showed between 45~70dB. (3) The HF specimen which was tempered at 450℃, a brittle fracture occurred as if it is torn in the direction of 45℃ on parallel area over the both sides of the tensile specimen, which led to several peak to be appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.
We are often faced with the task of having to estimate the amplitude of a source signal in the presence of a background. In the simplest case, the background can be taken as being flat, and of unknown magnitude B, and the source signal of interest assumed to be the amplitude A of a peak of known shape and position. We present a robust method to find the most probable values of A and B by applying the one-dimensional Newton-Raphson method. In the derivation of the formula, we adopted the Bayesian statistics and assmumed Poisson distribution so that the results could be applied to the analysis of very weak signals, as observed in FIMS (Far-ultraviolet IMaging Spectrogaph).
Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately 63,323 tCO2 eq/yr in 2005, while the lowest value of 35,962 tCO2 eq/ yr was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was 59,199 tCO2 eq/yr. The reduction rate by material recycling was the highest (-164,487 tCO2 eq/yr) in 2016, followed by the rates by heat recovery with incineration (-59,242 tCO2 eq/yr) and landfill gas recovery (-23,922 tCO2 eq/yr). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was -3.46 MtCO2 eq, implying a very positive impact on future CO2 reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.
전 세계적으로 플라스틱의 사용량은 꾸준히 증가하고 있는 추세이다. 그 결과, 해양쓰레기 중 플라스틱의 비중은 60~80%로써 높은 비중을 차지하고 있다. 플라스틱 중에서도 미세플라스틱은 5mm 미만의 플라스틱 조각으로서 인위적으로 제조된 1차 미세플라스틱과 물리・화학적으로 인한 파쇄나 분해에 의한 2차 미세플라스틱으로 나눌 수 있다. 이러한 미세플라스틱은 생물증폭(Biomagnification)과 생물농축(Bioaccumulation)이 우려되고 있다. 최근 미세플라스틱의 관심이 대두되면서 미세플라스틱의 정량・정성분석에 대한 문헌이 증가하는 추세이지만, 정량에 사용하는 단위는 연구자마다 상이하여 상호 비교가 어려운 현실이다. 또한 시료의 상태에 따라 유기물분해, 밀도차선별을 선별적으로 적용해야 한다. 특정 환경매체에서 정량・정성분석의 결과는 배출원별 배출량과 함께 고려해야 한다. 국외의 경우 미세플라스틱의 배출원별 배출량에 관한 연구가 이미 진행되었으나, 우리나라의 경우 관련된 연구는 찾아볼 수 없다. 이에 본 연구에서는 국외 선행연구에서 사용한 기법을 적용하여 우리나라에서 배출되는 미세플라스틱의 양을 추정하였다. 그 결과, 1차 미세플라스틱 배출량이 2차 미세플라스틱 배출량보다 약 10배 많은 것으로 나타났다.
Sulfate produced during anaerobic reduction limits the activity of methanogens but it is not reflected in the Intergovernmental Panel on Climate Change (IPCC) methodology for estimating CH4 emissions. In this study, CH4 emissions from the Sudokwon landfill site were estimated by adopting a methane correction factor, which was determined through the relationship between the COD/sulfate ratio and CH4 generation. Although the gas originating from the Sudokwon landfill site has not produced any environmental problems in recent years due to gas collection and soil cover maintenance activities, CH4 emissions estimated by the IPCC methodology indicated that only 60% of the CH4 was recovered and the remainder was emitted into the atmosphere, suggesting a potential environmental problem. Accordingly, CH4 estimates determined according to IPCC methodology must be modified by adopting the methane correction factor and considering the effect of sulfate concentration.
The purpose of this study is to show the geographical distribution and the temporal variation of the emission amount of biogenic volatile organic compounds(BVOCs) emanated from forests at Jeju Island.
The total emission amount of BVOCs calculated by using the CORINAIR Methodology is 3612 ton yr-1 at Jeju Island. More than half of BVOCs emissions is come from coniferous forest, and 45 per cent from broad leaved forest. The others is attributed to grassland. Of total emission of BVOCs, isoprene accounts for 28 per cent, monoterpene for 32 per cent, and other VOCs for about 40 percent, respectively. It can be shown that 3000~10000 kg yr-1 of BVOCs is emitted at the zone with dense forest from an altitude of 500 m to the top of Mt. Halla, and less than 1500 kg yr-1 at the zone an altitude of below 500 meters. The monoterpene emission is more than 1500 kg yr-1 due to the existence of a colony of Abies koreana at the place with more than 1500 meters and a community of Pinus thunbergii and Cryptomeria japonica at the elevation of 500~700 m. In the case of isoprene emission, there is 1500~3000 kg yr-1 at the zone of an elevation from 700 m to 1500 m due to dense broad leaved forest and very little of its emission at an elevation of more than 1500 meters because there is hardly broad leaved trees grown. In this study, emission of BVOCs according to the altitude above sea level is estimated under the situation of lack of the data for broad leaved tree. More detailed data and information for the distribution of broad leaved trees are needed in order to calculate more realistic BVOC emission.
This study was carried out to estimate the BVOCs emissions with the emission factors which reflected the native conditions of forests in Jeju Island. This study made effective use of the previous data for the weather data and the emission rate of each organic volatile component measured at 10 species of conifers and broad leaved trees. The CORINAIR method and the grid system of 1km×1km for whole area of Jeju Island were adopted in calculating the BVOCs emission emitted from forest. The vegetation information for Jeju Island was referred to GIS and a government report. By the results of BVOCs emission for Jeju Island, the 85% of monoterpene emission was emitted from conifers and the others was from broad leaved trees. Most of monoterpene emission was attributed to Pinus thunbergii and Cryptomeria japonica. The broad leaved trees greatly contributed to the isoprene emission and Quercus serrata played a dominant role in emission of isoprene. The total amount of BVOCs emission was estimated as 3612 ton yr-1 in Jeju Island. The 51.1% of total emission was contributed to conifers, the 44.9% to broad leaved trees, and the 4.0% to grassland. Of total emission of BVOCs, monoterpene accounted for 32.3%, isoprene for 28.0%, and OVOCs for 39.7%. The BVOCs emission estimated by this study was less than that estimated by other previous study. This means that it is important to survey the emission rate at native conditions and gather the detailed information for various species of vegetation on target region.
Analysis and evaluation of uncertainty is adopting the advanced methodology among the methods for greenhouse gas emission assessment that was defined in GPS2000 (Good practice guideline 2000) and GPG-LULUCF (GPG Land Use, Land-Use Change and Forestry). In 2006 IPCC guideline, two approaches are suggested to explain the uncertainty for each section with a national net emission and a prediction value on uncertainty as follows; 1) Spread sheet calculation based on the error propagation algorithm that was simplified with some assumptions, and 2) Monte carlo simulation that can be utilized in general purposes. There are few researches on the agricultural field including greenhouse gas emission that is generated from livestock and cultivation lands due to lack of information for statistic data, emission coefficient, and complicated emission formula. The main objective of this study is to suggest an evaluation method for the uncertainty of greenhouse gas emission in agricultural field by means of intercomparison of the prediction value on uncertainties which were estimated by spread sheet calculation and monte carlo simulation. A statistic analysis for probability density function for uncertainty of emission rate was carried out by targeting livestock intestinal fermentation, excrements treatment, and direct/indirect emission from agricultural lands and rice cultivation. It was suggested to minimize uncertainty by means of extraction of emission coefficient according to each targeting section.