검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oxidation of erythromycin, sulfamethazine and sulfathiazole by ozone was experimentally investigated to see the effects of background water quality such as ultrapure water, humic acid and biologically treated wastewater and water temperature on the removal rate, consequently to provide design information when the ozone treatment process is adopted. Initial concentration of the antibiotics was spiked to 10 μg/l and ozone dose was 1, 2, 3, 5, 8 mg/l. While the removal rate of erythromycin under ultrapure water background by ozone oxidation was over 99%, that under humic acid and biologically treated wastewater background was markedly reduced to the range of 59.8%~99% and 17.0%~99%, respectively. When water temperature is decreased from 20℃ to 4℃, the removal rate is reduced from the range of 17.0%~99% to the range of 9.4%~97.4% under biologically treated wastewater background. The effects of background and temperature on the removal rate of sulfamethazine and sulfathiazole were similar to erythromycin, but the degree was different. Therefore, it is concluded that the background of water to be treated as well as water temperature should be taken into consideration when the design factor such as ozone dose is determined to meet the treatment objective in the ozone treatment process.
        4,000원
        3.
        2013.06 구독 인증기관 무료, 개인회원 유료
        Erythromycin is a macrolide antibiotic and inhibits bac- terial protein synthesis by stimulating the dissociation of the peptidyl-tRNA molecule from the ribosomes during elon- gation. The use of macrolides has increased dramatically over the last few years and has led to an increase in bac- terial resistance to these antibiotics. Bacterial resistance to erythromycin is generally conferred by the ribosome methy- lation and/or transport (efflux) protein genes. Among the identified erythromycin-resistant genes, erm(B) (erythromy- cin methylation) and mef(A) (macrolide efflux) are gene- rally detectable in erythromycin-resistant streptococcal spe- cies. The distribution of these genes in oral streptococcal iso- lates has been reported in studies from other countries but has not been previously examined in a Korean study. We here examined by PCR the presence of erm(B) and mef(A) in oral streptococci isolated from Korean dental plaques. Among the 57 erythromycin-resistant strains tested, 64.9% harbored erm(B) whereas 40.4% were positive for mef(A). Eleven isolates had both the erm(B) and mef(A) genes. Twenty six isolates had only erm(B) and 12 isolates had only mef(A). Eight of the 57 strains examined were negative for both genes.
        4,000원