검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 882

        85.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An extract of fresh guava leaves (Psidium guajava) was used as a green carbon precursor to fabricate blue fluorescent carbon quantum dots (GCQDs) by hydrothermal process. The GCQDs show bright blue fluorescence emission under UV light with an excitation wavelength of 350 nm and emission at 450 nm. The physical structure of GCQDs was characterized by Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM) and atomic force microscopy (AFM). GCQDs 80 μg inhibited the growth of waterborne pathogens Escherichia coli and Salmonella typhi. We also investigated the catalytic activity of the GCQDs on the removal of two azo dyes, namely Congo red and bromophenol blue, with and without NaBH4. The GCQDs showed an excellent reduction of color intensity of both dyes without NaBH4 within 30 min of treatment.
        4,200원
        86.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the highefficiency recycling and quality improvement of tungsten-based materials have been developed.
        4,000원
        87.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this article, nitrogen (N) doped porous carbon nanofibers (N-PCNF) were prepared by carbonization of polymer-silica nanocomposite precursor, and its application for heavy metal ion removal was demonstrated. Carbon–silica composite nanofibers were obtained by carbonization of electrospun polyacrylonitrile (PAN)-silica nanofiber composites. Subsequent selective etching of silica porogen produced porous carbon nanofibers (PCNF). It was revealed by surface characterization with X-ray photoelectron spectroscopy (XPS) that the surface of the PCNF was nitrogen-doped because N atom from cyanide group in PAN chains remained in the hexagonal carbon structure. The use of the obtained N-PCNF for heavy metal ion ( Hg2+) removal was demonstrated using a simple adsorption test apparatus and 5, 10, 15, 20-tetraphenylporphine tetrasulfonic acid (TPPS) as an indicator. The N-PCNF showed a removal efficiency of 96 and 99% in 10 and 120 min, respectively, indicating a maximum heavy metal ion adsorption capacity at pH 7.0. In addition, heavy metal ion adsorption behavior was also analyzed using common adsorption isotherms. This article provides important information for future research activities regarding control over hazardous substances.
        4,000원
        88.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes – thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.
        4,000원
        1 2 3 4 5