검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Fe-Cu-Ni-Mo-C low alloy steel powder is consolidated by spark plasma sintering (SPS) process. The internal structure and the surface fracture behavior are studied using field-emission scanning electron microscopy and optical microscopy techniques. The bulk samples are polished and etched in order to observe the internal structure. The sample sintered at 900oC with holding time of 10 minutes achieves nearly full density of 98.9% while the density of the as-received conventionally sintered product is 90.3%. The fracture microstructures indicate that the sample prepared at 900oC by the SPS process is hard to break out because of the presence of both grain boundaries and internal particle fractures. Moreover, the lamellar pearlite structure is also observed in this sample. The samples sintered at 1000 and 1100oC exhibit a large number of tiny particles and pores due to the melting of Cu and aggregation of the alloy elements during the SPS process. The highest hardness value of 296.52 HV is observed for the sample sintered at 900oC with holding time of 10 minutes.
        4,000원
        2.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yttrium oxide is one of the most thermo-dynamically stable materials, so that it is generally used as a dispersoid in many kinds of dispersion strengthed alloys. In this study, a nickel-base superalloy is strengthened by dispersion of yttrium oxide particles. Elemental powders with the composition of Ni-22Cr-18Fe-9Mo were mechanically alloyed(M.A.) with 0.6 wt% . The MA powders were then HIP(hot isotactic press)ed and hot rolled. Most oxide particles in Ni-22Cr-18Fe-9Mo base ODS alloy were found to be Y-Ti-O type. The oxide particles were uniformly dispersed in the matrix and also on the grain boundaries. Tensile test results show that the yield strength and ultimate tensile strength of ODS alloy specimens were 1.2~1.7 times higher than those of the conventional X(R), which has the same chemical compositions with ODS alloy specimens except the oxide particles.
        4,000원
        3.
        2006.09 구독 인증기관·개인회원 무료
        Tungsten heavy alloys with different ratios of Mo and Ni-Fe matrix were liquid-phase-sintered to investigate their microstructural evolution. Results indicated that increased Mo in the alloy promoted the formation of a (W,Mo)(Ni,Fe) type intermetallic compound in the furnace-cooled condition. It was a monoeutectic reaction when the added Mo content was higher than 49at.%, or a eutectic reaction when this value was between 37at,% to 49at.%. When Mo was added between 25at.% to 37at.%, the precipitation of the intermetallic compound took place by either a eutectoid or peritectoid reaction.
        5.
        2006.04 구독 인증기관·개인회원 무료
        Fe-4Ni-0.5Mo-1Cu powder was selected as raw material, pressed and sinter-hardened at for 30 min with rapid cooling. The density varies in the range of . Its fatigue properties have been tested in axial loading of alternating tensile/compressive stress at R=-1 with a servo-pulse pump. The fatigue endurance limit was measured to be 260 MPa. The microstructure showed more homogeneous bainite and martensite. Fractography displayed the fatigue cracks initiated from the pore areas near the surface. A non-typical ductile fatigue striation was found. More dimples occurred on fracture surface due to the plastic deformation, which can prohibit cracking propagation and improve its fatigue properties.
        7.
        1997.06 구독 인증기관·개인회원 무료
        The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered(/30 min.) in 7Sv/o /25v/o to densities in the range 6.77-7.2 g/. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x was used for the comparison of fatigue strengths. For load cycles <3x, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.
        9.
        2015.04 KCI 등재 서비스 종료(열람 제한)
        The aim of this study is to evaluate the environmental impacts of recovery of valuable metals from the desulfurizing spent catalyst. Molybdenum, vanadium and nickel widely used in the area of catalysis. But the demand of these metals is full filled by industries. Every year, more than 18,000 tons spent catalysts are discarded. In most countries, spent catalyst is classified as a harmful waste. Thus, metal recovery from spent catalyst has been processed. The recovery process of molybdenum, vanadium and nickel from spent catalyst was mainly carried out wet process. However, this process are not suitable for economics and environmental aspects. Because environmental costs for removal of sulfur in the spent catalyst is high and huge amount of industrial wastewater occurs. Thus, it is necessary to develop a process which is efficient and does not cause pollution than the wet process. Thus, we have studied life cycle assessment about the dry process for the recovery of valuable metals.