We report a new route of akaganéite (β-FeOOH) formation and maghemite (γ-Fe2O3) formation. Akaganéite can be produced by stirring Fe2+ at room temperature for a day under mild conditions. We used FeCl2 ·4H2O as the precursor and mixed it with the Na-rich particle from the oxidation debris solution. The role of the concentration ratio between graphene oxide (GO) and NaOH was addressed to generate oxidation debris (OD) on the surface. In particular, the characterization of OD by transmission electron microscope (TEM) imaging provides clear evidence for the crystal formation of Na-rich particle under electron beam irradiation. For the base treatment process, increasing the concentration of a NaOH in Na-rich solution contributed primarily to the formation of γ-Fe2O3. The characterization by scanning electron microscope (SEM) and TEM showed that the morphology was changed from needle-like to small-oval form. In addition, β-FeOOH can be effectively produced directly using GO combined with FeCl2 ·4H2O at room temperature. More specifically, the role of parent material (Hummer's GO and Brodie's GO) was discussed, and the crystal transformation was identified. Our results concluded that β-FeOOH can be formed in basic and acidic conditions.
Hierarchically porous carbon foam composites with highly dispersed Fe2O3 nanoparticles confined in the foam pores, facilely fabricated by hydrolysis-driven emulsion polymerization strategy. The as-generated acidic conditions of Fe3+ hydrolysis could catalyze the polymerization of phenolic resin, and the carbon-based composite materials containing iron oxides were obtained in situ. The structural characterization results show that HCF@Fe2O3 NPs-2 electrode has the largest specific surface area (549 m2/ g) and pore volume (0.46 cm3/ g). Electrochemical results indicates that typical HCF@Fe2O3 NPs-2 electrode displays good capacitive properties. including high specific capacitance (225 F/g at 0.2 A/g current density). Excellent magnification performance (capacity retention rate 80% as current density increases from 0.2 to 10 A/g). At the same time, HCF@SnO2 NPs was successfully synthesized by replacing hydrolyzed tin tetrachloride with ferric chloride. This study provides a new idea for the preparation of metal oxide–carbon matrix composites, and also highlights the potential of such carbon foams in application of energy storage.
Graphene oxide/Iron III oxide (GO: Fe2O3) nanocomposites (NCs) have been topical in recent times owing to the enhanced properties they exhibit. GO acting as a graphene derivative has demonstrated superior features as obtainable in a graphene sheet. Furthermore, the attachment of oxygen functional groups at its basal and edge planes of graphene has allowed for easy metal/oxide functionalization for improved properties harvesting. Fe2O3 nanoparticles (NPs) on the other hand have polymorphic property enabling the degeneracy of Fe2O3 in different phases, thereby resulting in different physical and crystalline properties when used to functionalize GO. The properties of GO: Fe2O3 have been applied to supercapacitor energy harvesting, Li-ion batteries, and biomedicine. The enhanced properties are attributed to the adsorption and electronic structure properties of Fe atoms. In this review, the various synthesis used in the preparation of reduced/graphene oxide: Fe2O3 is discussed. As indicated in the considered literature, the XPS analysis suggests electronic bond interactions between C–C, C–O, C–Fe and Fe–C. The available report on UPS measurements further suggests the formation of mixed states emanating from and bonds. The discussed reports further suggest that the various applications based on the harvesting of electronic, electrical, and magnetic properties are due to the ionic and exchange interactions between the different orbital states of carbon, oxygen and iron. The challenges and future prospects of the synthesis and application of GO/Fe2O3 are examined. Graphical abstract showing the process of exfoliation, reduction and functionalization of graphite to produce reduced graphene oxide (rGO).
This work reported the electrochemical and photoelectrochemical (PEC) properties of a new photoelectrode based on hematite Co-Fe2O3@NiO, a photoactive semiconductor, was prepared using a process involving a combination of the co-precipitation and microwave-assisted synthesis of Fe2O3, Co-Fe2O3 and Co-Fe2O3@NiO, respectively. The obtained products were characterized by X-Ray powder Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray analysis (EDX), Ultraviolet–Visible (UV–vis) analysis, Fourier Transform Infrared spectroscopy (FT-IR). X-ray diffraction (XRD) pattern of the sample determined the crystal structure of α-Fe2O3 nanoparticles. The SEM image shows spherical nanoparticles. FTIR spectrospy spectrum confirmed the phase purity and chemical bond for the sample. Optical studies show a variation of band gap from 2.118 to 2.07 eV. The electrochemical and photoelectrochemical (PEC) performance of the films were examined by cyclic voltammetry, linear sweep voltammetry and chronoamperometry. The electrochemical oxidation of water achieved by Cobalt-doped Fe2O3@ GCE modified electrode exhibited the current density of 21 mA/g at 0.5 V vs. SCE for 5 at% of Co and reveals enhanced specific capacitance of 352.11 F/g. The catalytic performance of urea oxidation was measured by cyclic voltammetry on Co-Fe2O3@NiO nanoparticles modified glassy carbon electrode (GCE) in alkaline medium. The electrode Co-Fe2O3@NiO without annealing showed a peak current density of 1.59 mA/cm2 at 0.1 M urea in 1.0 M NaOH, which was 3.6 fold higher than that of Co-Fe2O3@NiO with annealing. In another part, this work reported the photoelectrochemical (PEC) properties of photoanode prepared by spin coating. The highest photocurrent 0.042 mA/cm2 at 0.5 V Vs SCE was obtained for 5% Co-Fe2O3@NiO while the photocatalytic oxidation of urea.
A high NIR-reflective black pigment is developed by Mn doping of Fe2O3. The pigment powders are prepared by spray pyrolysis, and the effect of the Mn concentration on the blackness and optical properties is investigated. Mn doping into the crystal lattice of -Fe2O3 is found to effectively change the powder color from red to black, lowering the NIR reflectance compared to that of pure Fe2O3. The pigment doped with 10% Mn, i.e., Fe1.8Mn0.2O3, exhibits a black color with an optical bandgap of 1.3 eV and a Chroma value of 1.14. The NIR reflectance of the prepared Fe1.8Mn0.2O3 black pigment is 2.2 times higher than that of commercially available carbon black, and this material is proven to effectively work as a cool pigment in a temperature rise experiment under near-infrared illumination.
In this work, α-Fe2O3 nanocrystals are synthesized by co-precipitation method and used as adsorbent to remove Cr6+, Cd2+, and Pb2+ from wastewater at room temperature. The prepared sample is evaluated by XRD, BET surface area, and FESEM for structural and morphological characteristics. XRD patterns confirm the formation of a pure hematite structure of average particle size of ~ 40 nm, which is further supported by the FESEM images of the nanocrystals. The nanocrystals are found to have BET specific surface area of ~ 39.18 m2 g−1. Adsorption experiments are carried out for the different values of pH of the solutions, contact time, and initial concentration of metal ions. High efficiency Cr6+, Cd2+, and Pb2+ removal occur at pH 3, 7, and 5.5, respectively. Equilibrium study reveals that the heavy metal ion adsorption of the α-Fe2O3 nanocrystals followed Langmuir and Freundlich isotherm models. The Cr6+, Cd2+, and Pb2+ adsorption equilibrium data are best fitted to the Langmuir model. The maximum adsorption capacities of α-Fe2O3 nanocrystals related to Cr6+, Cd2+, and Pb2+ are found to be 15.15, 11.63, and 20 mg g−1, respectively. These results clearly suggest that the synthesized α-Fe2O3 nanocrystals can be considered as potential nano-adsorbents for future environmental and health related applications.
Synthesis of composite powders for the Fe2O3-Zn system by mechanical alloying (MA) has been investigated at room temperature. Optimal milling and heat treatment conditions to obtain soft magnetic composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that α-Fe/ZnO composite powders in which ZnO is dispersed in α-Fe matrix can be obtained by MA of Fe2O3 with Zn for 4 hours. The change in magnetization and coercivity also reflects the details of the solid-state reduction process of hematite by pure metal of Zn during MA. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at 900 ~ 1,000 ℃ under 60 MPa. Shrinkage change after SPS of sample MA'ed for 5 hrs was significant above 300 ℃ and gradually increased with increasing temperature up to 800 ℃. X-ray diffraction results show that the average grain size of α-Fe in the α-Fe/ZnO composite sintered at 900 ℃ is in the range of 110 nm.
We report facile solution processing of mesoporous hematite (α-Fe2O3) thin films for high efficiency solar-driven water splitting. Fe2O3 thin films were prepared on fluorine doped tin oxide(FTO) conducting substrates by spin coating of a precursor solution followed by annealing at 550 oC for 30 min. in air ambient. Specifically, the precursor solution was prepared by dissolving non-toxic FeCl3 as an Fe source in highly versatile dimethyl sulfoxide(DMSO) as a solvent. The as-deposited and annealed thin films were characterized for their morphological, structural and optical properties using field-emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and UV-Vis absorption spectroscopy. The photoelectrochemical performance of the precursor (α-FeOOH) and annealed (α-Fe2O3) films were characterized and it was found that the α-Fe2O3 film exhibited an increased photocurrent density of ~0.78 mA/cm2 at 1.23 V vs. RHE, which is about 3.4 times higher than that of the α-FeOOH films (0.23 mA/cm2 at 1.23 V vs. RHE). The improved performance can be attributed to the improved crystallinity and porosity of α-Fe2O3 thin films after annealing treatment at higher temperatures. Detailed electrical characterization was further carried out to elucidate the enhanced PEC performance of α-Fe2O3 thin films.
본 연구에서는 배가스 내 존재하는 오염물질인 NO의 처리효율을 증대시키기 위하여 NO 산화 공정을 연구하였으며, 강력한 산화력의 건식산화제를 제조하는 방법으로 H2O2 촉매분해가 도입되었다. H2O2 분해공정 상에서 적용 가능한 K-Mn/Fe2O3 불균일계 촉매가 제조되었으며, 이들이 가지는 물리화학 적 특성이 H2O2 분해반응에 미치는 영향이 조사되었다. 제조된 건식산화제는 NO가 포함된 모사 배가스를 처리하기 위한 NO 산화공정에 적용되었으며, 다양한 모사 배가스의 유량(5, 10, 20 L/min)에서 약 100% 가까운 NO 전환율을 확인 하였다.
Carbon nanofiber (CNF) composites coated with spindle-shaped Fe2O3 nanoparticles (NPs) are fabricated by a combination of an electrospinning method and a hydrothermal method, and their morphological, structural, and chemical properties are measured by field-emission scanning electron microscopy, transmission electron microscopy, Xray diffraction, and X-ray photoelectron spectroscopy. For comparison, CNFs and spindle-shaped Fe2O3 NPs are prepared by either an electrospinning method or a hydrothermal method, respectively. Dye-sensitized solar cells (DSSCs) fabricated with the composites exhibit enhanced open circuit voltage (0.70 V), short-circuit current density (12.82 mA/cm2), fill factor (61.30%), and power conversion efficiency (5.52%) compared to those of the CNFs (0.66 V, 11.61 mA/cm2, 51.96%, and 3.97%) and spindle-shaped Fe2O3 NPs (0.67 V, 11.45 mA/cm2, 50.17%, and 3.86%). This performance improvement can be attributed to a synergistic effect of a superb catalytic reaction of spindle-shaped Fe2O3 NPs and efficient charge transfer relative to the one-dimensional nanostructure of the CNFs. Therefore, spindle-shaped Fe2O3-NPcoated CNF composites may be proposed as a potential alternative material for low-cost counter electrodes in DSSCs.
Fe2O3 coated plate mica(Fe2O3/mica) for infrared reflectance red pigment was prepared under hydrothermal treatment. Fe2O3 was perfectly coated on mica via the difference of surface charge between Fe2O3 and mica particles at pH 3. Fe2O3/mica was then calcined at 800 oC to stabilize the coated layer on mica. The infrare (IR) reflectance pigments were characterized by X-ray diffraction, FE-SEM, zeta potential, and a UV-Vis-NIR spectrophotometer. In particular, the CIE color coordinate and IR reflectance properties of Fe2O3/mica pigments were investigated in relation to the thickness variation of the Fe2O3 layer coated on mica of various lateral sizes. The isolation-heat red paints containing the pigments were prepared and optimized with a thinner, settling agent, and dispersant. Then, the films were made. The thermal property of isolation-heat on these films was observed through the relationship of the IR reflectance value, which was based on the variation of the Fe2O3 layer’s thickness coated on mica and mica’s lateral size as IR reflectance pigment. With an increase in IR reflectance on these films, the thermal property of isolation-heat was effectively enhanced.
We synthesized Fe-doped TiO2/α-Fe2O3 core-shell nanowires(NWs) by means of a co-electrospinning method anddemonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of thesamples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectronspectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained aftercalcination at 500oC exhibited core/shell NWs consisting of TiO2 in the core region and α-Fe2O3 in the shell region. In addition,the XPS results confirmed the formation of Fe-doped TiO2 by the doping effect of Fe3+ ions into the TiO2 lattice, which canaffect the ferromagnetic properties in the core region. For comparison, pure α-Fe2O3 NWs were also fabricated using anelectrospinning method. With regard to the magnetic properties, the Fe-doped TiO2/α-Fe2O3 core-shell NWs exhibited improvedsaturation magnetization(Ms) of approximately ~2.96emu/g, which is approximately 6.1 times larger than that of pure α-Fe2O3NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the TiO2lattice, the size effect of the Fe2O3 nanoparticles, and the structural effect of the core-shell nanostructures.
Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction ofpores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filtersand as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was suc-cessfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and Fe2O3 powdermixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was preparedby uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyure-thane(PU) foam, the sample was dried at 80℃. The PVA and PU foams were then removed by heating at 700℃ for 3hours. The debinded samples were subsequently sintered at 1250℃ with a holding time of 3 hours under hydrogenatmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigatedusing X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount ofslurry on the PU foam were increased with Fe2O3 mixing powder ratio but the shrinkage and porosity of Fe foams weredecreased with Fe2O3 mixing powder ratio.
This manuscript reports on compared color evolution about phase transformation of α-FeOOH@SiO2 and β-FeOOH@SiO2 pigments. Prepared α-FeOOH and β-FeOOH were coated with silica for enhancing thermal properties and coloration of both samples. To study phase and color of α-FeOOH and β-FeOOH, we prepared nano sized iron oxide hydroxide pigments which were coated with SiO2 using tetraethylorthosilicate and cetyltrimethyl-ammonium bro- mide as a surface modifier. The silica-coated both samples were calcined at high temperatures (300, 700 and 1000°C) and characterized by scanning electron microscopy, CIE L*a*b* color parameter measurements, transmission electron microscopy and UV-vis spectroscopy. The yellow α-FeOOH and β-FeOOH was transformed to α-Fe2O3 with red, brown at 300, 700°C, respectively.
This study examined the biostability and drug delivery efficiency of g-Fe2O3 magnetic nanoparticles (GMNs) by cytotoxicity tests using various tumor cell lines and normal cell lines. The GMNs, approximately 20 nm in diameter, were prepared using a chemical coprecipitation technique, and coated with two surfactants to obtain a water-based product. The particle size of the GMNs loaded on hangamdan drugs (HGMNs) measured 20-50 nm in diameter. The characteristics of the particles were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-TEM) and Raman spectrometer. The Raman spectrum of the GMNs showed three broad bands at 274, 612 and 771 cm1. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed that the GMNs were non-toxic against human brain cancer cells (SH-SY5Y, T98), human cervical cancer cells (Hela, Siha), human liver cancer cells (HepG2), breast cancer cells (MCF-7), colon cancer cells (CaCO2), human neural stem cells (F3), adult mencenchymal stem cells (B10), human kidney stem cells (HEK293 cell), human prostate cancer (Du 145, PC3) and normal human fibroblasts (HS 68) tested. However, HGMNs were cytotoxic at 69.99% against the DU145 prostate cancer cell, and at 34.37% in the Hela cell. These results indicate that the GMNs were biostable and the HGMNs served as effective drug delivery vehicles.
This study was focused on the optimization of low-pressure ultrasonic spraying process for synthesis of pure nanoparticles. As process variables, pressure in the reactor, precursor concentration, and reaction temperature were changed in order to control the chemical and microstructural properties of iron oxide nanoparticles including crystal phase, mean particle size and particle size distribution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies revealed that pure nanoparticles with narrow particle size distribution of 5-15 nm were successfully synthesized from iron pentacarbonyl () in hexane under 30 mbar with precursor concentrations of 0.1M and 0.2M, at temperatures over . Also magnetic properties, coercivity () and saturation magnetization () were reported in terms of the microstructure of particles based on the results from vibration sampling magnetometer (VSM).